词条 | 数学竞赛 |
释义 | 数学竞赛是发现人才的有效手段之一。现代意义上的数学竞赛是从匈牙利开始的。一些重大数学竞赛的优胜者,大多在他们后来的事业中卓有建树。因此,世界发达国家都十分重视数学竞赛活动。十余年来,我国中学数学竞赛活动蓬勃发展,其影响越来越大,特别是我国中学生在影响最大、水平最高的国际数学奥林匹克竞赛中,多次荣登榜首,成绩令世人瞩目,充分显示了中华民族的聪明才智和数学才能。了解国际赛史,熟悉国内赛况,认识数赛意义是必要的,也是有益的。 数学竞赛的发展史(古代与近代的数学竞赛 现代意义上的数学竞赛开始 “数学奥林匹克”名称的确立 国际数学奥林匹克(IMO)的开始 我国开始参加数学竞赛活动) 全国高中数学联赛二试 范围(1.平面几何 2.代数 3.立体几何 4.平面解析几何 5.其它) 高中数学竞赛大纲(修订讨论稿)(总则 一试 二试 二试范围:平面几何 二试范围:代数 二试范围:初等数论 二试范围:组合问题) 中国东南地区数学奥林匹克概述(简介 比赛起因 比赛形式 主办学校) 数学竞赛与竞赛数学的区别与联系竞赛数学是一门学科的延伸,数学竞赛是一项活动的举行。 竞赛数学是奥数的标准书面用语,奥数是奥林匹克数学的简称,但现在泛指数学难题,奥林匹克数学是仿照奥林匹克运动得名,科学标准的说法应该叫竞赛数学。 由于竞赛数学是伴随着数学竞赛而产生的,因此,谈到竞赛数学的产生我们先要探究一下数学竞赛。 1,数学竞赛的简史 数学竞赛与体育竞赛相类似,它是青少年的一种智力竞赛,所以苏联人首创了"数学奥林匹克"这个名词。在类似的以基础科学为竞赛内容的智力竞赛中,数学竞赛历史最悠久,参赛国最多,影响也最大。比较正规的数学竞赛是1894年在匈牙利开始的,除因两次世界大战及1956年事件而停止了7届外,迄今已举行过90多届。苏联的数学竞赛开始于1934年,美国的数学竞赛则是1938年开始的。这两个国家除第二次世界大战期间各停止了3年外,均己举行过50多届,其他有长久数学竞赛历史的国家是罗马尼亚(始于1902年)、保加利亚(始于1949年)和中国(始于1956年)。 2,数学竞赛的发展 数学竞赛活动是由个别城市,向整个国家,再向全世界逐步发展起来的。例如苏联的数学竞赛就是先从列宁格勒和莫斯科开始,至1962年拓展至全国的,美国则是到1957年才有全国性的数学竞赛的。 数学竞赛活动也是由浅入深逐步发展的。几乎每个国家的数学竞赛活动都是先由一些著名数学家出面提倡组织,试题与中学课本中的习题很接近,然后逐渐深入,并有一些数学家花比较多的精力从事选题及竞赛组织工作,这时的试题逐渐脱离中学课本范围,当然仍要求用初等数学语言陈述试题并可以用初等数学方法求解。例如苏联数学竞赛之初,著名数学家柯尔莫哥洛夫、亚历山大洛夫、狄隆涅等都参与过这一工作。在美国,则有著名数学家伯克霍夫父子、波利亚、卡普兰斯基等参与过这项工作。 国际数学奥林匹克开始举办后,参赛各国的备赛工作往往主要是对选手进行一次强化培训,以拓广他们的知识,提高他们的解题能力。这种培训课程是很难的,比中学数学深了很多。这时就需要少数数学家专门从事这项活动。 “竞赛数学”是随着数学教育课程的发展而产生的一门新课程。课程涉及数学竞赛的内容、思想和方法;也涉及到数学竞赛教育和数学课外教育的本质、方法、规律和途径的问题;课外学习与课堂学习的关系问题;辅导教师的进修和提高的问题。课程以数学竞赛所涉及的主要内容:数论、代数、几何及组合数学为载体,尤其注重数学思想和方法的探究,以提高学生的数学素养为目标。 竞赛数学又不同于上述这些数学领域。通常数学往往追求证明一些概括广泛的定理,而竞赛数学恰恰寻求一些特殊的问题,通常数学追求建立一般的理论和方法,而竞赛数学则追求用特殊方法来解决特殊问题;而且一旦某个问题面世,即成为陈题,又需继续创造新的问题。竞赛数学属于"硬"数学范畴,它通常也与纯粹数学一样,以其内在美,包括问题的简练和解法的巧妙,作为衡量其价值的重要标准。 竞赛数学不能脱离现有数学分支而独立发展,否则就成了无源之水,所以它往往由某些领域的专家兼稿,如参加国际数学奥林匹克的中国代表团的出色教练单樽,就是一位数论专家。 数学竞赛的发展史古代与近代的数学竞赛在世界上,以数为内容的竞赛有着悠久的历史:古希腊时就有解几何难题的比赛;我国战国时期齐威王与大将田忌的赛马,实是一种对策论思想的比赛;到了16、17世纪,不少数学家喜欢提出一些问题向其他数学家挑战,有时还举行一些公开的比赛,方程的几次公开比赛,赛题中就有最著名的费尔玛大定理:在整数n≥3时,方程x^n+y^n=z^n没有正整数解。 近代的数学竞赛,仍然是解题的竞赛,但主要在学生(尤其是高中生)之间进行。目的主要是为了发现与培育人才。 现代意义上的数学竞赛开始现代意义上的数学竞赛是从匈牙利开始的。1894年,为纪念数理学会主席埃沃斯荣任教育大臣,数理学会通过一项决议:举行以埃沃斯命名的,由高中学生参加的数学竞赛,每年十月举行,每次出三题,限4小时完成,允许使用任何参考书,试题以奥妙而奇特的形式见长,一般都有富创造特点的简明解答。在埃沃斯的领导下,这一数学竞赛对匈牙利的数学发展起了很大的作用,许多卓有成就的数学家、科学家都是历届埃沃斯竞赛的优胜者,如1897年弗叶尔、1898年冯卡门等。 受到匈牙利的影响,数学竞赛在东欧各国蓬勃开展:1902年罗马尼亚,1934年前苏联,1949年保加利亚,1950年波兰,1951年前捷克斯洛伐克等国家,相继进行了数学竞赛。 “数学奥林匹克”名称的确立把中学生的数学竞赛命名为“数学奥林匹克”的是前苏联,采用这一名称的原因是数学竞赛与体育竞赛有着许多相似之处,两者都崇尚奥林匹克精神。竞赛的成果使人们意外地发现,数学竞赛的强国往往也是体育竞赛的强国,这给了人们一定的启示。 1934年在列宁格勒,1935年在莫斯科,有关的国立大学分别组织了地区性的数学竞赛,并称之为“中学数学奥林匹克”。当时,莫斯科的著名数学家都参加了这一工作。前苏联的数学奥林匹克分为五级:学校奥林匹克,县奥林匹克,地区奥林匹克,共和国奥林匹克,全国奥林匹克,再选出参加国际数学奥林匹克的六名代表。 国际数学奥林匹克(IMO)的开始对国际间组织数学竞赛最热心的是罗马尼亚的教授罗曼。经过他的积级策划,1959年7月,第一届国际数学奥林匹克(简称IMO)在罗马尼亚古都布拉索举行,拉开了国际数学竞赛的帷幕。当时参加竞赛的学生共52名,分别来自东欧的罗马尼亚、保加利亚、匈牙利、波兰、前捷克斯洛伐克、前德意志民主共和国和前苏联等7个国家。每个国家有8名队员,前苏联只派了4名队员。以后(除1980年由于东道主蒙古经费困难而暂停,届数不计)每年举行一次,到1990年在我国举办第31届时,已发展到54个国家和地区的308名选手。到1995年在加拿大举办第36届时,双增加到73个国家和地区,400多名选手。 IMO的运转方式已经制度化,其竞赛章程规定: (1)一年一度的IMO的东道国由参赛国(或地区)轮流担任,所需经费由东道国负担,整个活动由东道国出任主席,由各国领队组成的主试委员会主持,试题和解答由参赛国提供,每国3—5题(也可不提供),东道国不提供试题,而由东道国组成选题委员会,对各国提供的试题进行评议与初选,主要考虑试题是否与以往的试题重复,并把试题按代数、数论、几何、组合数学、组合几何等分类,确定试题难度(A、B、C三级),选择30题左右。如果这些题有新解法的话,还要求提供原解法以外的解答,译成英文供主试委员选用。 (2)每个参赛团组织一个参赛队,成员不超过8人,其中队员不超过6人(是中学或同等级学校学生),正、副领队各1人,考试分两天两试,每试3题,每试4.5小时,每题7分,所以每个选手的最高得分是42分。 (3)IMO的官方用语为英、法、德、俄语,而参赛国大约需要26种文字,届时由各领队把试卷译成本国语言,并经协调委员会认可。度卷先由各国的正、副领队评判,再与协调委员会协商(每个协调员负责一个试题的评分),如有分歧,由主试委员会仲裁,协商工作是在信任与友好的气氛中进行的。 (4)IMO的获奖人数约占参赛人数的一半,评奖根据分数段评出一、二、三等奖获得者,并颁发金、银、铜牌,其比例平均为1:2:3。此外,主试委员会还可因在某个试题上作出了非常漂亮(指思路简捷巧妙,有独创性)或在数学上有意义的解答的学生给予特别奖。 为避免再次出现1980年那样的中断,IMO设立一个专门的委员会(有的译为场所委员会)负责确定各届的东道主。 按IMO的规定,每一届的东道主必须向上一届的所有参赛国发出邀请,而新参加的国家则应当向东道主表明参加的意愿,再由东道主发出邀请。 东欧外的国家中,第一个加入的是芬兰(1965年第7届),接着法国、英国、意大利、瑞典、荷兰等国家也都在60年代陆续加入。1974年,美国、越南加入。此后,参加国逐年增加,并遍布欧、美、亚、非及大洋洲,IMO才成为名副其实的全球性的数学大赛。 1988年第29届,根据香港的建议,IMO首次设立了荣誉奖,奖给那些虽然未得金、银、铜牌,但至少有一道题得满分的选手。这一措施,大大调动了各参赛国及其参赛选手的积极性。 IMO的精神就是奥林匹克精神:“重要的不在于取胜,而在于参加。”据此,自1983年第24届以来,虽然每一个代表队(6个人为组员)都计算自己的总分,且知道按总分的顺序排在多少名,但组织委员会不向团体优胜者颁奖,因为IMO只是个人的竞赛,不是团体的竞赛。这使得国际数学奥林匹克一直在友好交流的氛围中举行。 我国开始参加数学竞赛活动1981年第22届,美国是IMO的东道主。美国数学奥林匹克委员会主席格雷策发信邀请我国参加,中国数学会复信同意参加,后因故未能成行,只派了当时在美的访问学者作为观察员参加了。 到了1984年,在宁波召开的中国数学会首次普及工作会议上,确定1985年派两名选手参加第26届IMO,以了解情况、取得经验。由于选拔时间仓促,只指派了北京、上海各1名优秀学生参加。这两人由数学教育专家单墫老师经过一个月的仓促培训后,就去参加比赛,结果有1人得三等奖,两人平均成绩与以色列并列第17位,两人总分则排在第32位。1986年起,每年我国均派6名选手参赛。 我国选手的辉煌成绩,极大地激发了千百万中学生学习科学文化知识的热情,也极大地增强了中国人的民族自豪感。 举行数学竞赛的意义在“普及的基础上不断提高”的方针指引下,全国数学竞赛活动方兴未艾,特别是连续几年我国选手在国际数学奥林匹克中取得了可喜的成绩,使广大中小学师生和数学工作者为之振奋,热忱不断高涨,数学竞赛活动进入一个新的阶段,为了使全国数学竞赛活动持久、健康、逐步深入地开展,应广大中学师生和各级数学奥林匹克教练员的要求,特制定《数学竞赛大纲》以适应当前形势的需要。 本大纲是在国家教委制定的“全日制中学数学教学大纲”的精神和基础上制定的。《教学大纲》在教学目的一栏中指出:“要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性”。具体作法是:“对学有余力的学生,要通过课外活动或开设选修课等多种方式,充分发展他们的数学才能,要重视能力的培养,着重培养学生的运算能力、逻辑思维能力和空间想象能力,要使学生逐步学会分析、综合、归纳、演绎、概括、抽象、类比等重要的思想方法。同时,要重视培养学生的独立思考和自学的能力”。 《教学大纲》中所列出的内容,是教学的要求,也是竞赛的最低要求。在竞赛中对同样的知识内容的理解程度与灵活运用能力,特别是方法与技巧掌握的熟练程度,有更高的要求。而“课堂教学为主,课外活动为辅”是必须遵循的原则。因此,本大纲所列的课外讲授的内容必须充分考虑学生的实际情况,分阶段、分层次让学生逐步地去掌握,并且要贯彻“少而精”的原则,这样才能加强基础,不断提高。 全国高中数学联赛试题模式自2010年起,全国高中数学联赛试题新规则如下: 联赛分为一试、加试(即俗称的“二试”)。各个省份自己组织的“初赛”、“初试”、“复赛”等等,都不是正式的全国联赛名称及程序。 一试和加试均在每年10月中旬的第一个周日举行。 一试 考试时间为上午8:00-9:20,共80分钟。试题分填空题和解答题两部分,满分120分。其中填空题8道,每题8分;解答题3道,分别为16分、20分、20分。 (2009年的旧规则和2008年之前的旧规则略去。) 加试(二试) 考试时间为9:40-12:10,共150分钟。试题为四道解答题,前两道每题40分,后两道每题50分,满分180分。试题内容涵盖平面几何、代数、数论、组合数学等。 (2009年的旧规则和2008年之前的旧规则略去。) 依据考试结果评选出各省级赛区级一、二、三等奖。 其中一等奖由各省负责阅卷评分,然后将一等奖的考卷寄送到主办方(当年的主办方),由主办方复评,最终由主管单位(中国科协)负责最终的评定并公布。二、三等奖由各个省自己决定。 各省、市、自治区赛区一等奖排名靠前的同学可参加中国数学奥林匹克(CMO)。 根据最新消息,2011年数学联赛的试题规则与2010年相同。 全国高中数学联赛一试 范围全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。 全国高中数学联赛二试 范围1.平面几何基本要求:掌握初中竞赛大纲所确定的所有内容。 补充要求:面积和面积方法。 几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。 几个重要的极值:到三角形三顶点距离之和最小的点——费马点。到三角形三顶点距离的平方和最小的点——重心。三角形内到三边距离之积最大的点——重心。 几何不等式。 简单的等周问题。了解下述定理: 在周长一定的n边形的集合中,正n边形的面积最大。 在周长一定的简单闭曲线的集合中,圆的面积最大。 在面积一定的n边形的集合中,正n边形的周长最小。 在面积一定的简单闭曲线的集合中,圆的周长最小。 几何中的运动:反射、平移、旋转。 复数方法、向量方法*。 平面凸集、凸包及应用。 2.代数在一试大纲的基础上另外要求的内容: 周期函数与周期,带绝对值的函数的图像。 三倍角公式,三角形的一些简单的恒等式,三角不等式。 第二数学归纳法。 递归,一阶、二阶递归,特征方程法。 函数迭代,求n次迭代*,简单的函数方程*。 n个变元的平均不等式,柯西不等式,排序不等式及应用。 复数的指数形式,欧拉公式,棣美弗定理,单位根,单位根的应用。 圆排列,有重复的排列与组合。简单的组合恒等式。 一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。 简单的初等数论问题,除初中大纲中斯包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数[x],费马小定理,欧拉函数*,孙子定理*,格点及其性质。 3.立体几何多面角,多面角的性质。三面角、直三面角的基本性质。 正多面体,欧拉定理。 体积证法。 截面,会作截面、表面展开图。 4.平面解析几何直线的法线式,直线的极坐标方程,直线束及其应用。 二元一次不等式表示的区域。 三角形的面积公式。 圆锥曲线的切线和法线。 圆的幂和根轴。 5.其它抽屉原理。 容斥原理。 极端原理。 集合的划分。 覆盖。 注:全国高中数学联赛的二试命题的基本原则是向国际数学奥林匹克靠拢,总的精神是比高中数学大纲的要求略有提高,在知识方面略有扩展,适当增加一些课堂上没有的内容作为课外活动或奥校的讲授内容。 对教师和教练员的要求是逐步地掌握以上所列内容,并根据学生的具体情况适当地讲授。 有*号的内容二试中暂不考,但在冬令营中可能考 高中数学竞赛大纲(修订讨论稿)中国数学会普及工作委员会制定 (2006年8月) 总则从1981年中国数学会普及工作委员会举办全国高中数学联赛以来,在“普及的基础上不断提高”的方针指导下,全国数学竞赛活动方兴未艾,每年一次的数学竞赛吸引了上百万学生参加。1985年我国步入国际数学奥林匹克殿堂,加强了数学课外教育的国际交流,20年来我国已跻身于IMO强国之列。数学竞赛活动对于开发学生智力、开拓视野、促进教学改革、提高教学水平、发现和培养数学人才都有着积极的作用。这项活动也激励着广大青少年学习数学的兴趣,吸引他们去进行积极的探索,不断培养和提高他们的创造性思维能力。数学竞赛的教育功能显示出这项活动已成为中学数学教育的一个重要组成部分。 为了使全国数学竞赛活动持久、健康、逐步深入地开展,中国数学会普及工作委员会于1994年制定了《高中数学竞赛大纲》,这份大纲的制定对高中数学竞赛活动的开展起到了很好的指导性作用,我国高中数学竞赛活动日趋规范化和正规化。 近年来,新的教学大纲的实施在一定程度上改变了我国中学数学课程的体系、内容和要求。同时,随着国内外数学竞赛活动的发展,对竞赛活动所涉及的知识、思想和方法等方面也有了一些新的要求,原来的《高中数学竞赛大纲》已经不能适应新形势的发展和要求。经过广泛征求意见和多次讨论, 对《高中数学竞赛大纲》进行了修订。 本大纲是在《全日制普通高级中学数学教学大纲》的精神和基础上制定的。《全日制普通高级中学数学教学大纲》指出:“要促进每一个学生的发展,既要为所有的学生打好共同基础,也要注意发展学生的个性和特长……在课内外教学中宜从学生的实际出发,兼顾学习有困难和学有余力的学生,通过多种途径和方法,满足他们的学习需求,发展他们的数学才能 。” 学生的数学学习活动应当是一个生动活泼、富有个性的过程,不应只限于接受、记忆、模仿和练习,还应倡导阅读自学、自主探索、动手实践、合作交流等学习数学的方式,这些方式有助于发挥学生学习的主动性。教师要根据学生的不同基础、不同水平、不同兴趣和发展方向给予具体的指导。教师应引导学生主动地从事数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学的思想和方法,获得广泛的数学活动经验。对于学有余力并对数学有浓厚兴趣的学生,教师要为他们设置一些选学内容,提供足够的材料,指导他们阅读,发展他们的数学才能。 教育部2000年《全日制普通高级中学数学教学大纲》中所列出的内容,是教学的要求,也是竞赛的最低要求。在竞赛中对同样的知识内容,在理解程度、灵活运用能力以及方法与技巧掌握的熟练程度等方面有更高的要求。“课堂教学为主,课外活动为辅”是必须遵循的原则。因此,本大纲所列的课外讲授内容必须充分考虑学生的实际情况,使不同程度的学生在数学上得到相应的发展,并且要贯彻“少而精”的原则。 一试全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》。 二试全国高中数学联赛(加试)在知识方面有所扩展,适当增加一些教学大纲之外的内容,所增加内容是: 二试范围:平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理; 三角形旁心、费马点、欧拉线; 几何不等式; 几何极值问题; 几何中的变换:对称、平移、旋转; 圆的幂和根轴: 面积方法,复数方法,向量方法,解析几何方法。 二试范围:代数周期函数,带绝对值的函数; 三角公式,三角恒等式,三角方程,三角不等式,反三角函数; 递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式; 第二数学归纳法; 平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数及其应用; 复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根; 多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*; n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理; 函数迭代,求n次迭代*,简单的函数方程*。 二试范围:初等数论同余,欧几里得除法,裴蜀定理,完全剩余系,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法*,欧拉定理*,孙子定理*。 二试范围:组合问题圆排列,有重复元素的排列与组合,组合恒等式; 组合计数,组合几何; 抽屉原理; 容斥原理; 极端原理; 图论问题; 集合的划分; 覆盖; 平面凸集、凸包及应用*。 (有*号的内容加试中暂不考,但在冬令营中可能考。) 注:上述大纲在2006年第十四次普及工作会上讨论通过 中国数学奥林匹克概述简介中国数学奥林匹克(全国中学生数学冬令营)一般于每年元月举行。成绩最好的约30名选手以及中国女子数学奥林匹克和中国西部数学奥林匹克的前两名组成参加当年IMO的中国国家集训队。3月中旬至4月初,进行参加IMO的中国代表队的选拔工作。每年7月份参加IMO。全国中学生数学冬令营是在全国高中数学联赛的基础上进行的一次较高层次的数学竞赛。1985年,由北京大学、南开大学、复旦大学和中国科技大学四所大学倡议,中国数学会决定,自1986年起每年一月份举行全国中学生数学冬令营,后又改名为中国数学奥林匹克(Chinese Mathematical Olympiad,简称CMO)。冬令营邀请各省、自治区、直辖市全国高中数学联赛中的优胜者,以及香港、澳门、俄罗斯、新加坡等代表队参加,人数200人左右,分配原则是每省市区至少三人,然后设立分数线择优选取。冬令营为期5天,第一天为开幕式,第二、第三天考试,第四天学术报告或参观游览,第五天闭幕式,宣布考试成绩和颁奖。 形式CMO考试完全模拟IMO进行,每天3道题,限四个半小时完成。每题21分(为IMO试题的3倍,为符合中国人的认知习惯),6个题满分为126分。题目难度较国际数学奥林匹克为高,技术性极强。颁奖与IMO类似,设立一、二、三等奖,分数最高的约前30名选手将组成参加当年国际数学奥林匹克(International Mathematical Olympiad,简称IMO)的中国国家集训队。 从1990年开始,冬令营设立了陈省身杯团体赛。从1991年起,全国中学生数学冬令营被正式命名为中国数学奥林匹克(Chinese Mathematical Olympiad,简称CMO),它成为中国中学生最高级别、最具规模、最有影响的数学竞赛。 中国女子数学奥林匹克概述简介中国女子数学奥林匹克(Chinese Girls' Mathematical Olympiad,缩写CGMO),是特别为女学生而设的数学竞赛。设立目的在鼓励女学生学习数学和参与竞赛,培养学习数学兴趣并增强信心。从2002年起,每年8月举办。参赛队伍为中国各省重点中学代表队,和香港、澳门、菲律宾、俄罗斯、美国等队。 形式比赛设两卷,每卷四题,分两天作赛。全卷满分为120分。按参赛者成绩设金、银、铜牌。金牌前两名将入选国际数学奥林匹克中国国家集训队,参加IMO国家队的选拔。迄今为止,有两名女同学(陈卓、张敏)通过该竞赛入选国际数学奥林匹克,并夺得金牌。 此外,又设有健美操团体比赛。参赛者会接受健美操训练,再进行比赛。 人数通常每队至多有四名参赛选手,两名领队,领队中至少有一名女教师。 中国西部数学奥林匹克概述简介中国西部数学奥林匹克(Chinese Western Mathematical Olympiad,缩写为CWMO),是为位于中国西部省份(包括江西)的中学生举办的数学竞赛,由中国数学奥林匹克委员会举办,一般定于每年11月份举行。目的是为了鼓励西部地区中学生学习数学的兴趣。自从2001年举办第一届竞赛来,迄今为止,该竞赛已举办过九届,分别在西安、兰州、乌鲁木齐、银川、成都、鹰潭、南宁、贵阳、昆明举办。 比赛形式竞赛分两天,于8:00-12:00举行,每天四道题,每道题15分,满分120分。根据成绩分成一、二、三等奖,每届全体考生的前两名将入选次年的国际数学奥林匹克中国国家集训队,参加IMO(国际数学奥林匹克)国家队的选拔。2009年第51届国际数学奥林匹克金牌选手黄骄阳就是通过中国西部数学奥林匹克的选拔进入国家集训队的。 中国东南地区数学奥林匹克概述简介中国东南地区数学奥林匹克,简称东南数奥,是中国东南部福建、浙江、江西合办的数学竞赛,参赛者为高一学生。参赛队伍主要是来自闽浙赣三省中学的代表队,也有上海、广东、香港等地的代表队。每队由4名高一学生组成。 比赛起因举办比赛的起因,在于直到2003年这三省也没有学生进国际数学奥林匹克的中国代表队,为了促进三地数学奥林匹克的交流,培养学生进入国家队,三省重点中学合作,从2004年起举办比赛,轮流由三省数学学会和中学主办。至今为止,中国东南地区数学奥林匹克已经举办过七届竞赛。 比赛形式比赛分两日进行,每日在4小时内解答4道题,都是证明题。试题难度与全国高中数学联赛相当。 主办学校2004年:浙江温州中学 2005年:福建福州一中 2006年:江西南昌二中 2007年:浙江镇海中学 2008年:福建龙岩一中 2009年:江西师大附中 2010年:台湾彰化鹿港高中 国际数学奥林匹克概述简介国际数学奥林匹克(International Mathematical Olympiad,简称IMO)是世界上规模和影响最大的中学生数学学科竞赛活动。由罗马尼亚罗曼(Roman)教授发起。 历程它由罗马尼亚罗曼(Roman)教授发起,自1959年7月在罗马尼亚古都布拉索举行第一届竞赛,当时,参加竞赛的学生共有52人,分别来自罗马尼亚、保加利亚、匈牙利、波兰、前捷克斯洛伐克、前德意志民主共和国和前苏联等7个国家。每个国家有8名队员,前苏联只派了4名。除1980年由于东道主蒙古经费困难而停赛一年外,每年一届。最初几届只有七、八个国家和地区参加。最初的组织工作由几个参赛国家轮流承担,到了1980年,国际数学教育委员会专门成立了IMO分会,负责寻求IMO每年的组织者。到1990年我国举办第31届时,已发展到54个国家和地区的308名选手。到1999年在罗马尼亚举办第40届时,又增加到81个国家和地区,共450名选手。到2010年在哈萨克斯坦举办第51届时,又增加到105个国家和1200名选手。我国第一次派学生参加国际数学奥林匹克是1985年,当时仅派两名学生,并且成绩一般。我国第一次正式派出6人代表队参加国际数学奥林匹克是1986年。 经过40多年的发展,国际数学奥林匹克的运转逐步制度化、规范化,有了一整套约定俗成的常规,并为历届东道主所遵循。 试题IMO的试题不局限于中学数学的内容,它包含了所谓微积分学前数学的基本部分,甚至也包含了部分微积分学的内容。随着年代的推移,试题难度也越来越大。试题的难度不在于解决试题需要许多高深的知识,而在于对数学本质的洞察力、创造力和数学机智。试题范围虽然从来没有正式规定,但主要为数论、组合数学、数列、不等式、函数方程和几何等。在不少届的试题中,常出现包含当年年度数学的趣味数论问题,显示出数学家们的幽默风趣。有些题目给出比恰好推出所需结论的条件宽许多的条件,而有些题目又只让你推出很强结论中的一少部分,与通常类型的由恰当条件推出恰当结论的题目相比,这些题目的真正目的在于考你的灵活性、技巧性。有些题目风格迥异,思维方式新颖,只有运用某一技巧才能解决,对这样的题目,通常的思维方式也就不可能引导出正确的解题思路。有些题目的解法对我们启示,决不限于是一种针对具体问题的具体技巧,而是一种精深的数学思维方式。 竞赛章程IMO的运转方式已经制度化,其竞赛章程规定: (1)一年一度的IMO于7月举行。东道国由参赛国(或地区)轮流担任,所需经费由东道国负担,整个活动由东道国出任主席,由各国领队组成的主试委员会主持。试题与解答由参赛国提供,每国3至5道题(也可以不提供),东道国不提供试题,而由东道国组成选题委员会,对各国提供的试题进行评议与初选,主要考虑试题是否与以往的试题重复,并把试题按代数、数论、几何、组合数学、组合几何等分类,确定试题难度(A、B、C三级),选择30题左右,如果这些题有新解法的话,还要求提供原解法以外的解法,译成英文供主试委员选用。 (2)每个参赛团组织一个参赛队,成员不超过8人,其中队员不超过6人(是中学或同等级学校学生),正、副领队各1人。 (3)IMO的官方用语为英语、德语、俄语、法语,而参赛国大约需要26种文字,届时由各领队把试卷译为本国语言,并经协调委员会认可。试卷先由各国的正、副领队评判,再与协调委员会协商(每个协调员负责一个试题的评分),如有分歧,由主试委员会仲裁,协商工作是在信任与友好的气氛中进行的。 (4)IMO的获奖人数占参赛人数的一半,在评奖时,并不排出个人第一、第二的顺序,而是根据分数段评出一、二、三等奖获得者,其比例一般为1:2:3。此外,主试委员会还可因在某个试题上做出了非常漂亮(指思路简洁巧妙,有独创性)或在数学上有意义的解答的学生给予特别奖,获得特别奖的人数甚少。与此同时,为避免再次出现1980年那样的中断,IMO设立一个专门的委员会(有的译为场所委员会)负责确定各届的东道主。按IMO的规定,每一届的东道主必须向上一届的所有参赛国发出邀请,而新参加的国家则应当向东道主表明参加的意愿,再由东道主发出邀请。 1988年第29届,根据香港的建议,IMO首次设立了荣誉奖,奖给那些虽然未得金、银、铜牌,但至少有一道题得满分的选手。这一措施,大大调动了各参赛国及参赛选手的积极性。 IMO的精神就是奥林匹克精神:“重要的不在于取胜,而在于参加。” 考试一般每届竞赛从各参赛国提供的预选题中选用六道题。考试分两天进行,每天四个半小时做三道题,每题7分,满分42分。参赛者独立做题,只对个人评分和奖励,没有团体奖。据此,自1983年第24届以来,虽然每一个代表队(6个人为组员)习惯上计各队总分,排列各参赛国名次(因各队参赛人数一样多)。 但组织委员会不向团体优胜者颁奖,因为IMO只是个人的竞赛,不是团体的竞赛。 历届主办国以及总分第一历届IMO的主办国,总分冠军及参赛国(地区)数为: 年份 届次 东道主 总分冠军 参赛国家、地区数 1959 1 罗马尼亚 罗马尼亚 7 1960 2 罗马尼亚 前捷克斯洛伐克 5 1961 3 匈牙利 匈牙利 6 1962 4 前捷克斯洛伐克 匈牙利 7 1963 5 波兰 前苏联 8 1964 6 前苏联 前苏联 9 1965 7 前东德 前苏联 8 1966 8 保加利亚 前苏联 9 1967 9 前南斯拉夫 前苏联 13 1968 10 前苏联 前东德 12 1969 11 罗马尼亚 匈牙利 14 1970 12 匈牙利 匈牙利 14 1971 13 前捷克斯洛伐克 匈牙利 15 1972 14 波兰 前苏联 14 1973 15 前苏联 前苏联 16 1974 16 前东德 前苏联 18 1975 17 保加利亚 匈牙利 17 1976 18 澳大利亚 前苏联 19 1977 19 南斯拉夫 美国 21 1978 20 罗马尼亚 罗马尼亚 17 1979 21 美国 前苏联 23 1981 22 美国 美国 27 1982 23 匈牙利 前西德 30 1983 24 法国 前西德 32 1984 25 前捷克斯洛伐克 前苏联 34 1985 26 芬兰 罗马尼亚 42 1986 27 波兰 美国、前苏联 37 1987 28 古巴 罗马尼亚 42 1988 29 澳大利亚 前苏联 49 1989 30 前西德 中国 50 1990 31 中国 中国 54 1991 32 瑞典 前苏联 56 1992 33 俄罗斯 中国 62 1993 34 土耳其 中国 65 1994 35 中国香港 美国 69 1995 36 加拿大 中国 73 1996 37 印度 罗马尼亚 75 1997 38 阿根廷 中国 82 1998 39 中华台北 伊朗 84 1999 40 罗马尼亚 中国、俄罗斯 81 2000 41 韩国 中国 82 2001 42 美国 中国 83 2002 43 英国 中国 84 2003 44 日本 保加利亚 82 2004 45 希腊 中国 85 2005 46 墨西哥 中国 98 2006 47 斯洛文尼亚 中国 104 2007 48 越南 俄罗斯 93 2008 49 西班牙 中国 103 2009 50 德国 中国 104 2010 51 哈萨克斯坦 中国 105 意义正如专家们指出:IMO的重大意义之一是促进创造性的思维训练,对于科学技术迅速发展的今天,这种训练尤为重要。数学不仅要教会学生运算技巧,更重要的是培养学生有严密的思维逻辑,有灵活的分析和解决问题的方法。 国际数学奥林匹克竞赛对于促进中学数学教育的改革,激发青少年对数学的学习兴趣,选拔优秀的数学人才等都起到了越来越大的作用,受到人们的普遍重视。数学奥林匹克传统将永远发扬光大。 国外的数学竞赛活动美国数学奥林匹克美国数学奥林匹克是数学能力和智慧的角逐,其难度和灵活度都是较高的,因此在国际上也是有相当影响的数学竞赛。美国数学奥林匹克在美国的地位等同于我国的中国数学奥林匹克(CMO)。 美国数学奥林匹克在每年的4月底或5月初举行,每次竞赛有5或6道试题(1972年第1届至1995年第24届每次5道试题;1996年第25届起为每届6道试题),前24届要求考生在3.5个小时内完成,从1996年起改为分两天进行,每天3道题,4.5个小时完成。美国每年由USAMO的优胜者进行数学奥林匹克训练,最后选拔6名学生作为美国国家队队员,参加国际数学奥林匹克(IMO)。 学生需要通过美国数学竞赛(AMC)和美国数学邀请赛(AIME)的两层选拔,最终可以进入美国数学奥林匹克(USAMO)的角逐。 俄罗斯数学奥林匹克俄罗斯数学奥林匹克是俄罗斯国内规模最大,水平最高的数学竞赛活动。俄罗斯数学奥林匹克的前身是全苏数学奥林匹克和全俄数学奥林匹克。 苏联是开展数学竞赛活动比较早的国家之一。1934年列宁格勒大学主办了列宁格勒中学生数学奥林匹克,首次将数学竞赛与奥林匹克体育竞赛相联系。称数学竞赛为数学奥林匹克,形象地揭示了数学竞赛是参赛选手间智力的角逐。1935年莫斯科大学和基辅大学又分别主办了莫斯科数学奥林匹克和基辅数学奥林匹克。以后每年举行(除了在1942年至1944年中断过3年外),1961年第一届全俄数学奥林匹克(All Russian Mathematical Olympiad)开始举行。这是人类历史上第一次把数学竞赛冠于奥林匹克。1972年赛事改称全苏数学奥林匹克(All Soviet Union Mathematical Olympiad),届数重新算起。苏联解体后的1992年赛事改称独联体数学奥林匹克(the Commonwealth of Independent States Mathematical Olympiad),届数再次重新算起。这也是最后一届独联体数学奥林匹克。1993年俄罗斯数学奥林匹克(Russian Mathematical Olympiad)开始举行,届数从第19届计起。 俄罗斯数学奥林匹克的特点是分年级进行,每个年级(七至十一年级)都是要求在4小时内解答5道试题。高年级的优胜者可被免试推荐进入大学。现在,俄罗斯的数学短期活动已发展到包括小学生、中学生和大学生在内的各级各类数学奥林匹克,其中尤以中学数学短期活动开展得最为广泛和普遍。今天,俄罗斯是继匈牙利之后的又一富有实力的国家,在已举办的41届国际数学奥林匹克中总分15次居第一,名列各国之首。 主办方目前中国的主要数学竞赛及主办方如下: “全国小学数学奥林匹克”(中国数学会普及工作委员会) 全国小学“希望杯”数学邀请赛(中国科学技术协会普及部 ,中国优选法统筹法与经济数学研究会,华罗庚实验室 , 《数理天地》杂志社,《中青在线》网站) 小学“我爱数学”夏令营--”全国小学数学奥林匹克”的总决赛(中国数学会普及工作委员会) 全国“华罗庚金杯”少年数学邀请赛--小学(中国少年儿童新闻出版总社、中国优选法统筹法与经济数学研究会、中央电视台青少中心、华罗庚实验室、中华国际科学交流基金会等) “全国初中数学联赛”(中国数学会普及工作委员会)济南等地区已经取消竞赛 “全国初中数学竞赛”(中国教育学会中学数学教学专业委员会) 初中“我爱数学”夏令营--“全国初中数学联赛”的总决赛(中国数学会普及工作委员会) 全国初中“希望杯”数学邀请赛(中国科学技术协会普及部,中国优选法统筹法与经济数学研究会,华罗庚实验室,《数理天地》杂志社,《中青在线》网站) 全国“华罗庚金杯”少年数学邀请赛--初中(中国少年儿童新闻出版总社、中国优选法统筹法与经济数学研究会、中央电视台青少年中心、华罗庚实验室、中华国际科学交流基金会等) “五羊杯”初中数学竞赛(《中学数学研究》杂志社) “全国高中数学联赛”(中国数学会普及工作委员会) 中国数学奥林匹克--冬令营(中国数学会普及工作委员会、中国数学会奥林匹克委员会) 中国女子数学奥林匹克(中国数学会奥林匹克委员会) 中国西部数学奥林匹克(中国数学会奥林匹克委员会) 中国东南地区数学奥林匹克(中国数学会奥林匹克委员会、闽浙赣数学奥林匹克协作体) 北方数学奥林匹克邀请赛(中国数学会奥林匹克委员会) 全国高中“希望杯”数学邀请赛(中国科学技术协会普及部,中国优选法统筹法与经济数学研究会,华罗庚实验室,《数理天地》杂志社,《中青在线》网站) |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。