词条 | 史瓦兹解 |
释义 | 史瓦兹解 根据广义相对论中“宇宙中一切物质的运动都可以用曲率来描述,引力场实际上就是一个弯曲的时空”的思想,爱因斯坦给出了著名的引力场方程: R_uv-1/2*R*g_uv=κ*T_uv (Rμν-(1/2)gμνR=8GπTμν/(c*c*c*c) -gμν) 这被称为爱因斯坦引力场方程,也叫爱因斯坦场方程。 该方程是一个以时空为自变量、以度规为因变量的带有椭圆型约束的二阶双曲型偏微分方程。它以复杂而美妙著称,但并不完美,计算时只能得到近似解。最终人们得到了真正球面对称的准确解——史瓦兹解。 加入宇宙学常数后的场方程为: R_uv-1/2*R*g_uv+Λ*g_uv=κ*T_uv |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。