请输入您要查询的百科知识:

 

词条 生物材料
释义

生物材料用于人体组织和器官的诊断、修复或增进其功能的一类高技术材料,即用于取代、修复活组织的天然或人造材料,其作用药物不可替代。生物材料能执行、增进或替换因疾病、损伤等失去的某种功能,而不能恢复缺陷部位。

简介

原理

生物材料(Biological materials )又称生物工艺学或生物技术。应用生物学和工程学的原理,对生物材料、生物所特有的功能,定向地组建成具有特定性状的生物新品种的综合性的科学技术。生物工程学是70年代初,在分子生物学、细胞生物学等的基础上发展起来的,包括基因工程、细胞工程、酶工程、发酵工程等,他们互相联系,其中以基因工程为基础。只有通过基因工程对生物进行改造,才有可能按人类的愿望生产出更多更好的生物产品。而基因工程的成果也只有通过发酵等工程才有可能转化为产品。

相关产品

医学上通过生物工程可以生产出大量廉价的防治人类疾病的药物,如入胰岛素、干扰素、生长激素、乙型肝炎疫苗等。生物工程在食品、轻工中的应用面也很广。1983年美国用生物工程生产的用于制作饮料的高果糖浆的年产量达600万吨,从而使蔗糖的消耗量减少一半。采用生物工程技术,使育种工作发生了很大变化,如把抗病基因转移到烟草中去,已培育出防止害虫的烟草新品种;把低等生物根瘤菌的固氮基因转移到高等作物的细胞中,使之能自己制造氮肥,也取得了一定成果。目前世界各国对生物工程十分重视,我国也把生物

工程列为重点发展的科研项目之一。生物工程学的研究将对人类的生产方式和生活方式产生巨大的影响。

生物材料用于人体组织和器官的诊断、修复或增进其功能的一类高技术材料,即用于取代、修复活组织的天然或人造材料,其作用药物不可替代。生物材料能执行、增进或替换因疾病、损伤等失去的某种功能,而不能恢复缺陷部位。

性能

生物功能性

指生物材料具备或完成某种生物功能时应该具有的一系列性能。

根据用途主要分为:

*承受或传递负载功能。如人造骨骼、关节和牙等,占主导地位

*控制血液或体液流动功能。如人工瓣膜、血管等

*电、光、声传导功能。如心脏起博器、人工晶状体、耳蜗等

*填充功能。如整容手术用填充体等

生物相容性

指生物材料有效和长期在生物体内或体表行使其功能的能力。用于表征生物材料在生物体内与有机体相互作用的生物学行为。

根据材料与生物体接触部位分为:

*血液相容性。材料用于心血管系统与[[血液]]接触,主要考察与血液的相互作用

*与心血管外的组织和器官接触。主要考察与组织的相互作用,也称一般生物相容性

*力学相容性。考察力学性能与生物体的一致性

相关研究

应用

材料学相关研究的专家、学者您是否想知道哪里才是您高水平学术论文的发表园地?

以下是2007年《中国组织工程研究与临床康复》杂志已发表文章例举

关键词:生物材料学生物功能材料生物医用材料生物陶瓷材料 生物医学材料7生物质材料 高纯生物材料生物医用高分子材料

研究与报告

《牛心包衍生材料引导成骨效应的x射线和骨密度评估》

《评价ti-6al-7nb合金的细胞相容性及其组织相容性》

综述与专论

《血管内皮生长因子在口腔颌面骨组织工程中的应用》

《牙组织工程的研究现状和展望》

技术与方法

《氯磷酸二钠表面改性羟基磷灰石血清蛋白吸附行为的改变》

《人成釉蛋白抗体的制备及组织表达特异性》

研究快报

《新型材料vitapex糊剂一次性根管充填与常规材料根管充填效果比较》

《钛表面粗糙度对牙周韧带细胞早期附着的影响》

学术探讨

《碳纳米管在生物医学领域的应用现状及展望》

经验交流

《金-瓷修复体瓷边缘的制作技术》

研究对象

心、脑血管组织工程支架材料;骨及软骨组织工程支架材料;新型功能复合生物材料; 口腔材料;人工器官材料;微胶囊材料;药物控制释放材料;载药栓塞剂;生物微反应器

研究内容:力学性能;理化性能;耐蚀性能;材料表面改性;细胞黏附性能;组织相容性、血液相容性;生物安全性;生物降解性;骨传导性;血液-材料相互作用评价;体内实验及评价;生物材料临床应用

术语

生物材料

生物材料通常有两个定义:狭义的生物材料是指天然生物材料,也就是由生物过程形成的材料。广义的生物材料是指用于替代、修复组织器官的天然或人造材料。

生物材料学

生物材料学是涉及生物材料的组成结构、性能与制备相互关系和规律的科学。其主要目的是在分析天然生物材料微组装、生物功能及形成机理的基础上,发展仿生学高性能工程材料,及用于人体组织器官修复与替代的新型医用材料。其主要研究内容有:生物过程形成的材料结构、生物矿化原理,材料生物相溶性机理,生物材料自主组装、自我修复的原理。

分类和特性

分类

生物材料应用广泛,品种很多,其分类方法也很多。生物材料包括金属材料(如碱金属及其合金等)、无机材料(生物活性陶瓷,羟基磷灰石等)和有机材料三大类。有机材料中主要是高分子集合物材料,高分子材料通常按材料属性分为合成高分子材料(聚氨酯、聚酯、聚乳酸、聚乙醇酸、乳酸乙醇酸共聚物及其他医用合成塑料和橡胶等)、天然高分子材料(如胶原、丝蛋白、纤维素、壳聚糖等);根据材料的用途,这些材料又可以分为生物惰性(bioinert)、生物活性(bioactive)或生物降解(biodegradable) 材料,高分子聚合物中,根据降解产物能否被机体代谢和吸收,降解型高分子又可分为生物可吸收性和生物不可吸收性。根据材料与血液接触后对血液成分、性能的影响状态则分为血液相容性聚合物和血液不相容性。根据材料对机体细胞的亲和性和反映情况,可分为生物相容性和生物不相容性聚合物等。

特点

生物材料主要用在人身上,对其要求十分严格,必须具有四个特性:

(1) 生物功能性。因各种生物材料的用途而异,如:作为缓释药物时,药物的缓释性能就是其生物功能性。

(2) 生物相容性。可概括为材料和活体之间的相互关系,主要包括血液相容性和组织相容性(无毒性、无致癌性、无热原反应、无免疫排斥反应等)。

(3) 化学稳定性。耐生物老化性(特别稳定)或可生物降解性(可控降解)。

(4) 可加工性。能够成型、消毒(紫外灭菌、高压煮沸、环氧乙烷气体消毒、酒精消毒等)。

生物相容性

宿主反应

(1)生物学反应

A: 血液反应

1、血小板血栓;

2、凝血系统激活;

3、纤溶系统激活;

4、溶血反应;

5、白细胞反应;

6、细胞因子反应;

7、蛋白粘附;

B: 免疫反应

1、补体激活;

2、体液免疫反应(抗原-抗体反应);

3、细胞免疫反应。

C: 组织反应

1、炎症反应;

2、细胞粘附

3、细胞增殖(异常分化)

4、形成蘘膜

5、细胞质的转变

(2)生物体对生物反应的变化

1.急性全身反应

过敏、毒性、溶血、发热、神经麻痹等

2. 慢性全身反应

毒性、致畸、免疫、功能障碍等

3. 急性局部反应

炎症、血栓、坏死、排异等

4. 慢性局部反应

致癌、钙化、炎症、溃疡等

材料反应

生物机体作用于生物材料-材料反应,其结果可导致材料结构破坏和性质改变而丧失其功能。可分为如下三个方面:

*金属腐蚀

*聚合物降解

*磨损

(1)金属腐蚀

生物体内的腐蚀性环境:(1)含盐的溶液是极好的电解质,促进了电化学腐蚀和水解;(2)组织中存在具有催化或迅速破坏外来成分能力的多种分子和细胞。将对生物金属材料产生腐蚀。

对于生物材料而言多为局部腐蚀,具体包括应力腐蚀开裂、点腐蚀、晶间腐蚀、腐蚀疲劳以及缝隙腐蚀等,导致生物材料整体破坏。

虽然金属材料在生物体内保持惰性状态,但仍然可能会有物质溶入生物组织中,并对生物体组织产生毒性反应,造成组织的损害。如不锈钢中溶出的Cr+6生物组织的毒性。

(2)聚合物降解

聚合物在长期使用过程中,由于受到氧、热、紫外线、机械、水蒸气、酸碱及微生物等因素作用,逐渐失去弹性,出现裂纹,变硬、变脆或变软、发粘、变色等,从而使它的物理机械性能越来越差的现象。

聚合物老化易形成的碎片、颗粒、小分子量单体物质,因此使用它时必须谨慎,对耐久性器件,必须保持一定强度和其它机械性能,老化产物不能对周围组织有毒害作用。

例如,医用缝合线降解时会产生酸性物质,如果量少,很容易被人体中的化学物质中和,如果老化产物较大,则会对周围组织产生损害。

(3) 磨损

人工关节常用材料为Ti6Al4V,由于表面易氧化生成TiO2,其耐磨性差,植入人体后,磨损造成在关节周围组织形成黑褐色稠物,从而引起疼痛。钛合金人工全髋关节平均寿命一般都低于10年。

目前,大量的人工髋关节是由坚硬的金属或陶瓷的股骨头与超高分子聚乙烯的髋臼杯组合成,然而它的寿命也不超过25年。长期随访资料显示,假体失败的主要原因是超高分子聚乙烯磨损颗粒所造成的界面骨溶解,从而导致假体松动。这种磨损颗粒所导致的异物-巨细胞反应,又称颗粒病,是晚期失败的最主要原因。

应用及发展

一般性能要求

(1)生物相容性

生物相容性主要包括血液相容性、组织相容性。材料在人体内要求无不良反应,不引起凝血、溶血现象,活体组织不发生炎症、排拒、致癌等。

(2)力学性能

材料要有合适的强度、硬度、韧性、塑性等力学性能以满足耐磨、耐压、抗冲击、抗疲劳、弯曲等医用要求。

(3)耐生物老化性能

材料在活体内要有较好的化学稳定性,能够长期使用,即在发挥其医疗功能的同时要耐生物腐蚀、耐生物老化。

(4)成形加工性能

容易成形和加工,价格适中。

生物材料分类

按材料功能划分:

*1、血液相容性材料 如人工瓣膜、人工气管、人工心脏、血浆分离膜、血液灌流用吸附剂、细胞培养基材等;

*2、软组织相容性材料 如隐形眼睛片的高分子材料,人工晶状体、聚硅氧烷、聚氨基酸等,用于人工皮肤、人工气管、人工食道、人工输尿管、软组织修补等领域;

*3、硬组织相容性材料 如医用金属、聚乙烯、生物陶瓷等,关节、牙齿、其它骨骼等;

*4、生物降解材料 如甲壳素、聚乳酸等,用于缝合线、药物载体、粘合剂等;

*5、高分子药物多肽、胰岛素、人工合成疫苗等,用于糖尿病、心血管、癌症以及炎症等。

按材料来源分类:

*1、自体材料

*2、同种异体器官及组织;

*3、异体器官及组织;

*4、人工合成材料;

*5、天然材料

根据组成和性质分为:

* 1、生物医用金属材料

* 2、医用高分子材料

* 3、医用无机非金属材料

生物医用金属材料

较优秀的生物医用金属材料有,医用不锈钢、钴基合金、钛及钛合金、镍钛形状记忆合金、金银等贵重金属、银汞合金、钽、铌等金属和合金。

(1) 医用不锈钢

具有一定的耐腐蚀性和良好的综合力学性能,且加工工艺简便,是生物医用金属材料中应用最多,最广的材料。

常用钢种有US304、316、316 L、317、317L等。

医用不锈钢植入活体后,可能发生点蚀,偶尔也产生应力腐蚀和腐蚀疲劳。医用不锈钢临床前消毒、电解抛光和钝化处理,可提高耐蚀性。

医用不锈钢在骨外科和齿科中应用较多。

(2) 钴基合金

钴基合金人体内一般保持钝化状态,与不锈钢比较,钴基合金钝化膜更稳定,耐蚀性更好。在所有医用金属材料中,其耐磨性最好,适合于制造体内承载苛刻的长期植入件。

在整形外科中,用于制造人工髋关节、膝关节以及接骨板、骨钉、关节扣钉和骨针等。在心脏外科中,用于制造人工心脏瓣膜等。

(3) 医用钛和钛合金

不仅具有良好的力学性能,而且在生理环境下具有良好的生物相容性。由于其比重小,弹性模量较其他金属更接近天然骨,故广泛应用于制造各种能、膝、肘、肩等人造关节。此外,钛合金还用于心血管系统。钛合金耐磨性能不理想,且存在咬合现象,限制了其使用范围。

生物医用高分子

按应用对象和材料物理性能分为软组织材料、硬组织材料和生物降解材料。其可满足人体组织器官的部分要求,因而在医学上受到广泛重视。目前已有数十种高分子材料适用于人体的植入材料。

* 软组织材料:故主要用作为软组织材料,特别 是人工脏器的膜和管材。聚乙烯膜、聚四氟乙烯膜、硅橡胶膜和管,可用于制造人工肺、肾、心脏、喉头、气管、胆管、角膜。聚酯纤维可用于制造血管、腹膜等。

* 硬组织材料:丙烯酸高分子(即骨水泥)、聚碳酸醋、超高分子量聚乙烯、聚甲基丙烯酸甲脂(PMMA)、尼龙、硅橡胶等可用于制造人工骨和人工关节。

* 降解材料:脂肪族聚醋具有生物降解特性,已用于可接收性手术缝线。

生物医用无机非金属材料

生物无机材料主要包括生物陶瓷、生物玻璃和医用碳素材料。

按植入生物活体内引起的组织与材料反应,生物陶瓷分为:

(1)近于惰性的生物陶瓷,如氧化铝生物陶瓷、氧化锆生物陶瓷、硼硅酸玻璃;

(2)表面活性生物陶瓷,如磷酸钙基生物陶瓷、生物活性玻璃陶瓷;

(3)可吸收性生物陶瓷,如偏磷酸三钙生物陶瓷、硫酸钙生物陶瓷。

生物活性玻璃陶瓷植入活体后,能够与体液发生化学反应,并在组织表面生成羚基磷灰石层,故可用于人工种植牙根、牙冠、骨充填料和涂层材料。

与自然骨比较,生物活性玻璃陶瓷虽然具有较高的强度,但韧性较差,弹性模量过高,易脆断,在生理环境中抗疲劳性能较差,目前还不能直接用于承力较大的人工骨。

医用碳素材料:具有接近于自然骨的弹性模量。

医用碳素材料疲劳性能最优,强度不随循环载荷作用而下降。无序堆垛的碳材料耐磨性理想。

医用碳素材料在生理环境中较稳定,近于惰性,具有较好的生物相容性,不会引起凝血和溶血反应,特别适合于在生理环境中使用。

医用碳材料已大量用于心血管系统的修复,如人工心脏瓣膜、人工血管。还可作为金属和聚合物的涂层材料。

生物医用复合材料

生物医用复合材料是由二种或二种以上不同材料复合而成的。

按基材分为:高分子基、陶瓷基、金属基等生物医用复合材料。

按增强体形态和性质分为纤维增强、颗粒增强、生物活性物质充填生物医用复合材料。

按材料植入体内后引起的组织与材料反应分为:生物惰性、生物活性和可吸收性生物医用复合材料。

性能评价

生物材料机械性能评价

医用金属作为受力期间,在人体内服役,其受力状态及其复杂,如人工关节,每年要承受约3.6×106次、且数倍于人体重量的载荷冲击和磨损。

人体骨的力学性能因年龄、部位而异,评价骨和材料的机械性能最重要的指标有:抗拉抗压强度、屈服强度、弹性模量。疲劳极限和断裂韧性等;

对于摩擦部位的材料,一般用硬度反映其耐磨性能。

弹性模量是生物材料的重要性质之一,过高过低都不行。模量相对与骨过高,在应力作用下,承受应力的金属和骨将产生不同的应变,在金属与骨的接触面会出现相对位移,从而造成界面处松动;长时间下,还会造成应力屏蔽,引起骨组织的功能退化和吸收。过低,变形较大,起不到固定和支撑作用。

生物学评价标准

生物材料的生物学评价一般按用途、接触方式、接触人体部位和接触时间等划分,但标准还未完全实现统一,且随着新一般生物相容材料向智能生物材料(如组织工程材料)转变,标准还在完善。

目前各国在已基本统一的国际标准化组织提出的生物标准上,保留了各自的特点。

目前已有的标准有:

1、ISO10993.1-1992至ISO10993.12-1992;

2、美国ASTM(F748-82)标准;

3、我国在美国和日本的基础上,1997年由卫生部颁布了我们自己的标准。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/11/15 12:18:21