词条 | 三角形中线 |
释义 | 定义三角形中,连接一个顶点和它所对边的中点的线段叫做三角形的中线。 任何三角形都有三条中线,而且这三条中线都在三角形的内部,并交于一点 由定义可知,三角形的中线是一条线段。 由于三角形有三条边,所以一个三角形有三条中线。 且三条中线交于一点。这点称为三角形的重心。 每条三角形中线分得的两个三角形面积相等。 性质设⊿ABC的角A、B、C的对边分别为a、b、c. 1、三角形的三条中线都在三角形内。 2、三角形的三条中线长: ................_______ ma=(1/2)√2b^2+2c^2-a^2 ; ................_______ mb=(1/2)√2c^2+2a^2-b^2 ; ................_______ mc=(1/2)√2a^2+2b^2-c^2 。 (ma,mb,mc分别为角A,B,C所对的中线长) 3、三角形的三条中线交于一点,该点叫做三角形的重心。 4、直角三角形斜边上的中线等于斜边的一半。 5.三角形中线组成的三角形面积等于这个三角形面积的3/4. 证明三角形中线组成的三角形面积等于这个三角形面积的3/4. 给出一个△ABC.中线为CD,BF,AE.(如右图) 解:连接DE并倍长到P.连接BP,FP,EF. ∵DE=EP,∠BEP=∠DEC,BE=EC. ∴△DEC≌△PEB(SAS). ∴CD=BP. S△DEC=S△PEB. 又∵DE平行且等于1/2AC,DE=EP. ∴EP平行且等于1/2AC. 即EP平行且等于AF. ∴四边形AEPF为平行四边形(对边平行且相等的四边形为平行四边形) ∴AE=FP. S△EFP=S△AEF. 这样△ABC的三条中线CD,BF,EF就构成了△BFP. ∵BF为中线,平分△ABC面积. ∴S△BAF=S△BFC. 又∵EF为△BFC中线,平分△BFC面积. ∴S△BEF=S△EFC=1/4 S△ABC. 又∵CD为△ABC中线,平分△ABC面积. ∴S△ADC=S△BDC. 又∵DE平分△BDC面积. ∴S△BDE=S△DEC=1/4 S△ABC. ∴S△BEP=S△DEC=1/4 S△ABC. ∵AE为△ABC中线,平分△ABC面积. ∴S△BAE=S△AEC. 又∵EF平分△AEC. ∴S△AEF=S△EFC. ∴S△AFE=S△EFP=1/4 S△ABC ∵S△BFP=S△BEF+S△BEP+S△EFP =1/4 S△ABC+1/4 S△ABC+1/4 S△ABC =3/4 S△ABC |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。