请输入您要查询的百科知识:

 

词条 三角函数恒等变形
释义

三角函数的基础是平面几何中的相似形与圆,但研究的方法是采用代数中函数的研究方法和代数运算的方法,于是使三角函数成了联系几何和代数的桥梁,使它在几何和代数中都能有所作为。这无疑使三角函数在复数、立体几何和解析几何中都有着广泛的应用。

同角三角函数间的基本关系式:

·平方关系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

·积的关系:

sinα=tanα*cosα

cosα=cotα*sinα

tanα=sinα*secα

cotα=cosα*cscα

secα=tanα*cscα

cscα=secα*cotα

·倒数关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

直角三角形ABC中,

锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),(余割csc)都叫做角A的锐角三角函数。

正弦(sin)等于对边比斜边;

余弦(cos)等于邻边比斜边;

正切(tan)等于对边比邻边;

余切(cot)等于邻边比对边;

正割(sec)等于斜边比邻边;

余割 (csc)等于斜边比对边。

三角函数恒等变形公式

·两角和与差的三角函数:

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·辅助角公式:

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

·倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

·三倍角公式:

sin(3α)=3sinα-4sin^3(α)

cos(3α)=4cos^3(α)-3cosα

·半角公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

·降幂公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=vercos(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

· 万能公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

·积化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

·其他:

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

思考:1、锐角三角函数与解直角三角形直接相关。钝角三角函数则与解任意三角形直接相关,任意角的三角函数虽然是锐角,钝角三角形的推广,它是基本的,有表现力的周期函数。2、 将角放在直角坐标系中不但使角的表示有了统一的方法,而且使我们能够借助直角坐标系中的单位圆,建立角的变化与单位园上点的变化之间的对应关系,从而用单位圆上点的纵坐标,横坐标表示圆心角的正玄函数,余弦函数。因此,正弦函数,余弦函数的基本性质与圆的几何性质存在着紧密的联系。3、 例如,勾股定理与同角三角函数的基本关系有内在的一致性,圆的各种对称性与三角函数奇偶性,诱导公式等也是一致的。4、 因此,三角函数的研究过程能过很好的体现属性结合的 思想。5、利用三角函数树形结合也可以很好的解决一些物理问题。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/2/27 3:18:55