请输入您要查询的百科知识:

 

词条 zernike矩
释义

简介:

Zernike矩是基于 Zernike多项式的正交化函数,所利用的正交多项式集是 1个在单位圆内的完备正交集。当计算 1幅图像的 Zernike矩时 ,以该图像的形心 (也称作重心 )为原点 ,把像素坐标映射到单位圆内。Zernike矩是复数矩 ,一般把 Zernike矩的模作为特征来描述物体形状。1个目标对象的形状特征可以用 1组很小的 Zernike矩特征向量很好的表示,低阶矩特征向量描述的是 1幅图像目标的整体形状,高阶矩特征向量描述的是图像目标的细节.

在模式识别中,一个重要的问题是对目标的方向性变化也能进行识别。Zernike 矩是一组正交矩,具有旋转不变性的特性,即旋转目标并不改变其模值。。由于Zernike 矩可以构造任意高阶矩,所以Zernike 矩的识别效果优于其他方法.

Zernike 提出了一组多项式{ V nm ( x , y) } 。这组多项式在单位圆{ x2 + y2 ≤1} 内是正交的,具有如下形式: V nm ( x , y) = V nm (ρ,θ) = Rnm (ρ) exp ( jmθ) ,并且满足 ∫∫ x^2+y^2 <= 1 [( V nm ( x , y) 的共轭]* V pq ( x , y) d x d y. = [pi/(n+1)]*δnpδmq .

if(a==b) δab = 1 else δab = 0,n 表示正整数或是0;m是正整数或是负整数它表示满足m的绝对值<=n 而且n-m的绝对值是偶数这两个条件;ρ 表示原点到象素(x,y)的向量的距离;θ 表示向量ρ 跟x 轴之间的夹角(逆时针方向).

在图像处理中的应用:

对于一幅数字图象,积分用求和代替,即A nm =∑x∑y f(x,y) *[( V nm (ρ,θ) 的共轭],x^2+y^2 <=1

实际计算一幅给定图象的Zernike 矩时,必须将图象的重心移到坐标圆点,将图象象素点映射到单位圆内。由以上可知,使[ V nm (ρ,θ) 的共轭]可提取图象的特征,低频特性由n 值小的[( V nm (ρ,θ) 的共轭]来提取,高频特性由n 值大的来提取。Zernike 矩可以任意构造高价矩, 而高阶矩包含更多的图象信息, 所以Zernike 矩识别效果更好。,Zernike 矩仅仅具有相位的移动。它的模值保持不变。所以可以将| A nm | 作为目标的旋转不变性特征。因为| A nm | =| A n , - m | ,所以只需计算m ≥0 的情况。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/12/23 17:32:35