请输入您要查询的百科知识:

 

词条 热效率
释义

发动机中转变为机械功的热量与所消耗的热量的比值 。

简介

rè xiào lǜ

发动机中转变为机械功的热量与所消耗的热量的比值

通常的汽油发动机热效率为30%左右,非直喷柴油发动机通常为35%左右,而TDI 发动机的燃油被直接喷射到燃烧室内,其燃烧效率可以达到43%。

瓦特对蒸汽机的改良就是一个提高热效率的过程

公式

热效率公式本身是与有序度指标"熵变"(用简化的S表示)有联系的.即

ηs=A/Q=1 -(T2/T1)

=1 -(T2/Q1)S (4)

若当热机内的微观粒子的运动有序,并向宏观有序发展(做功)时,即熵S→0,则(T2/Q1)S→0,

ηs→1

如果微观粒子的运动无序时,0≤η<<1.

如果让(4)式中的 Q用系统总的可做功的能量表示,即

Q=3PV或Q=U=3PV

则传统热机的热效率

η0=A/Q=PV/3PV

=1/3

他就是传统热机效率的一个界限,也就是为什么传统热机的效率不易提高的根本原因.

当微观运动有序时,由(2),(3)两式知A=3PV,故新式有序动力机的效率

ηs=A/Q=3PV/3PV

=1

显然,"热"机(发动机)效率是可以达到或趋向理想值100%的.

提高效率的途径

能源物质或发动机的效率η,可以表示为做功W或A与能量E或热Q的比,即

η= W/E = A/E

由(3)--(7)式,及(9)-(12)式的E=Q+W=PE+(1-P)E,W=A=(1-P)E,则

η= 1-P = 1-Wi/Ω = q (14)

η= 1-lnW/lnΩ = -lnP/lnΩ (15)

= 1-S/klnΩ (16)

由统计熵S=k`-`B`!`lnW,和P=W/Ω得

W=EXP(S/k`-`B`!`)

P=EXP(S/k`-`B`!`)/Ω

则效率还可以用熵表示

η=1-EXP(S/k`-`B`!`)/Ω (17)

将P=2/3代入(14)式,就得到与η=1-Q`-`2`!`/Q`-`1`!`=1/3同样的结果

η=1-P=1-2/3=1/3

即单级无序热机的效率极限1/3。对于多级热机,后级热机所具有的总能量Ei+1,是前级热机排放出的热量Qi,Ei+1=Qi;他的效率就是前级热机效率的1/3,ηi+1=ηi(1/3),则n级热机的复合效率

ηn=∑∏ηi

对ηi=1/3的n级热机,他的复合效率的极限

limηn=lim∑(1/3)n=1/2

n→∞ n→∞

只有当P=0时,系统的微观状态高度有序,η=1-P=1,则发动机的效率为100%,这是单级发动机的效率。

如果用多级发动机,要想使发动机的效率达到1,只需每单级发动机的效率,即有序度为P=1/2就行,

limηn=lim∑(1/2)n=1

求解

若只想使用有限级的发动机就能使效率达到100%,利用复合效率公式,及其等比级数的和式S=a[(1-qn)/(1-q)]就能推出所需的单级发动机的效率或有序度P。通常,应有a=q=η,S=1。只用两级发动机,即n=2,就要使机组的效率趋向100%时,则S=a[(1-q2)/(1-q)]式有

η2+ η - 1 = 0

`.`解得

η1=-(1+51/2)/2

η2=(51/2-1)/2

因η≯1,η≮0,故舍弃η1=-(1+51/2)/2,保留η=(51/2-1)/2的解。即只需发动机的单级效率η=(51/2-1)/2或P=1-η=(3-51/2)/2,就可使二级有序发动机的组合效率达到100%。此种组合的不完全有序因有序度P=(3-51/2)/2,较之完全有序P=1小得多,故实现起来相对于P=1要容易些、可能性更大些。其他级数的发动机也可仿此处理,他们的单级效率通常在(3-51/2)/2<P<1/2或(51/2-1)/2<η<1/2之间。当然,单级有序发动机的效率越高越好如η=2/3,η=1,P=0最好。

讨 论

显然,在P=0和P=1这两种极端条件下,(4)-(7),(9)-(12)式都是成立的。在理想状态下,若总平动能E=Ex+Ey+Ez=3pV=2NEk,而E=∑niεi,因此,

2NEk=∑niεi

Ek=(1/2N)∑niεi (18)

又因为热机的E=Q+W,将(18)式代入,故

Q=E-W

=E-pV

=2NEk-(2/3)NEk

=∑niεi-(1/3)∑niεi

=(2/3)∑niεi

E = (2/3)∑niεi + (1-2/3)∑niεi

= (2/3)∑niεi + (1/3)∑niεi

其中P=2/3,与(4)'式一致,微分后与(5)'式相符。

由(4)-(7)、(9)-(12)式知道内能U=∑niεi向U=Q+W的分解式是形如

U=a∑niεi+b∑niεi

dU=a(∑εidni+∑nidεi)+b(∑εidni+∑nidεi)

E=a∑niεi+b∑niεi

dE=a(∑εidni+∑nidεi)+b(∑εidni+∑nidεi)

的关系式,且a=1-b或b=1-a。对于理想气体,由pV=NkT=(2/3)NEk,及(18)式,知

T=(1/3kN)∑niεi

Q=ST

=a∑niεi

a=S/3kN

`.`则

b=1-a

=1-S/3kN

这里的S是热力学熵。也可以有a=k1P,b=k2q.特别时,k1=k2.

用lnW/lnΩ和-lnP/lnΩ作为分解内能及其微分式的系数、参数,或用他们来描述、显示热与功在内能中所占的份额、比重或权重,是考虑到它与统计熵在形式上的相似性,故都取对数。

由(18)式,可将理想气体状态方程pV=NkT=(2/3)NEk扩展为具有更多、更深内涵的状态方程和关系式

pV=(1/3)∑niεi

T=(1/3kN)∑niεi

结果

结果表明了理想状态下,系统的状态方程与量子能量式的关系。体系的粒子数和能级都对功产生影响。系统的温度与体系的能量也关系密切,系统内粒子数和能级的变化均会引起温度的变化。

内能量子式的有序化分解,同时又给出了一个非常重要的结果: 更精确的,定量化的热量量子式,及对"热"的更深层次的,更新的定义式: Q=P∑niεi,δQ=P(∑εidni+∑nidεi).它比传统对"热"的定性诠释和理解"热是粒子的无规运动"更进了一步——可以定量,并且加深了对热本质的认识,即热是与量子(粒子)的能量(能级)及粒子运动的混乱程度(有序度,熵,分布)密切相关的.加强并促进了它与非平衡热力学,耗散结构理论和混沌学等的联系,及实际应用,意不寻常.

能量或内能式E=∑niεi及其微分式,可以分解成象热力学第一定律那样的式子(4)-(12)式。热和功都与系统的熵、有序度q或lnW/lnΩ紧密相联。有序度是分辨系统内能或能量E=∑niεi状态、过程及其演化趋势的关键,更是分离热与功的根本参数。他体现并反映着热与功的权重,并改变了过去片面的微分分离式,加强了热力学与力学的联系。他是连接热学与力学、联系经典与近代热力学的桥梁,他决定着内能(能量)是产热还是做功及其大小和效率。他揭示了体系的微观、宏观有序度与热学和动力学特性间的内在关系,建立了微观粒子与宏观动力学质点间的联系,也使有序度与发动机的效率发生了联系,并得到了一个全新的效率公式η=1-P,他是提高发动机效率,改变发动机研究开发方向,突破热机效率极限1/3和1/2的新希望和理论基础。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/11/15 14:45:14