词条 | 炔烃 |
释义 | 炔烃,为分子中含有碳碳三键的碳氢化合物的总称,其官能团为碳-碳三键(C≡C),分子通式为CnH2n-2,是一种不饱合的碳氢化合物。简单的炔烃化合物有乙炔(C2H2),丙炔(C3H4)等。简单的炔烃的熔点、沸点,密度均比具有相同碳原子数的烷烃或烯烃高一些。不易溶于水,易溶于乙醚、苯、四氯化碳等有机溶剂中。炔烃可以和卤素、氢、卤化氢、水发生加成反应,也可发生聚合反应。工业中乙炔被用来做焊接时的原料。 炔烃的结构最简单的炔烃是乙炔,分子式为C2H2。炔烃的结构特点是:两碳碳三键是由一个σ键和两个π键共同构成的。由于π键是经侧面重叠形成的,不能重叠得很充分,所以π键的键能比σ键低,较易打开。个三键碳均为sp杂化,每个碳还各剩两个互相垂直的p轨道,每个轨道上都有一个电子。两个三键碳原子各用一个sp杂化轨道经轴向重叠形成一个碳碳σ键,再各用两个p轨道经侧面重叠形成两个碳碳π键。 有机分子中的键长可用电子衍射、微波、红外或拉曼光谱予以测定。乙烷、乙烯和乙炔中的碳碳键长和碳氢键长如下所示: 上列图片显示,由于π键的出现,使碳碳间的距离缩短,而且三键比双键更短。这是因为随着不饱和度的增大,两个碳原子之间的电子云密度也增大,所以碳原子越来越靠近。上列数字还表明:碳氢化合物中的碳氢键的键长也不是一个常数。这说明:键长除了与成键原子的不饱和度有关外,还和参与成键的碳原子的杂化方式有关。即随着杂化轨道中s成分的增大,碳碳键的键长缩短。乙烷、乙烯和乙炔中的碳原子的s成分分别为25%,33%和50%,从sp3到sp,碳原子的s成分增大了一倍,所以碳碳键的键长越来越短。 由于杂化碳原子的s成分不同,丙烷、丙烯、丙炔中的碳碳单键的键长是不等长的,s成分越多,碳碳单键的键长越短,随着键长的缩短,原子间的键能将增大。 物理性质简单炔烃的沸点、熔点以及密度,一般比碳原子数相同的烷烃和烯烃要高一些。这是由于炔烃分子较短小、细长,在液态和固态中,分子可以彼此很靠近,分子间的van der Waals作用力很强。炔烃分子略极性比烯烃强。烯烃不易溶于水,而易溶于石油醚、乙醚、苯和四氯化碳中。一些炔烃的名称及物理性质列入下表: 化合物 熔点/℃ 沸点/℃ 相对密度 乙炔 -82(在压力下) -82(升华) — 丙炔 -102.5 -23 — 1-丁炔 -122 8 — 1-戊炔 -98 40 0.695 1-己炔 -124 71 0.719 1-庚炔 -80 100 0.733 1-辛炔 -70 126 0.747 2-丁炔 -24 27 0.694 2-戊炔 -101 56 0.714 2-己炔 -88 84 0.730 3-己炔 -105 81 0.725 化学性质末端炔烃的特性1.酸性 碳氢键的异裂也可以看做是一种酸性电离(ionization),所以将烃称为含碳酸。含碳酸的酸性可用pKa的值来判断,pKa越小,酸性越强。末端炔烃与其它可以产生质子的化合物的酸性比较如下所示: 化合物 构造式 pKa(近似值) 甲烷(烷烃) CH4 ≈49 乙烯(烯烃) CH2=CH2 ≈40 氨 NH3 34 丙炔(末端炔烃) CH3C=CH ≈25 乙醇 CH3CH2OH 15.9 水 H2O 15.74上面的数据表明:末端炔烃的酸性大于末端烯烃,两者又大于烷烃。这是因为轨道的杂化方式会影响碳原子的电负性。一般来讲,杂化轨道中s成分越大,碳原子的电负性就越大,所以在≡C—H中,形成C—H键的电子对比末端烯烃中C—H键和烷烃中的C—H的电子对更靠近碳原子,导致末端炔烃中的C—H键更易于异裂,释放出质子,因而末端炔烃的酸性比末端烯烃和烷烃强。所以,它们可与强碱反应形成金属化合物,称为炔化物。 乙炔一钠中的氢还可以和碱继续反应,生成乙炔二钠。二者皆为弱酸盐,与水作用很快即水解成乙炔和氢氧化钠,但乙炔二钠比乙炔一钠更为激烈,几乎是爆炸性的。乙炔一钠是制备一元取代乙炔,也叫做末端炔烃的重要原料。 【末端炔烃的鉴别】 将乙炔通入银氨溶液或亚铜氨溶液中,则分别析出无色和红棕色炔化物沉淀。 其他末端炔烃也会发生上述反应,因此可通过以上反应,可以鉴别出分子中含有的—C≡CH基团。 【末端炔烃的提纯】 上述炔化物干燥后,经撞击会发生强烈爆炸,生成金属和碳。故在反应完了时,应加入稀硝酸使之分解。另外,由于氰负离子和银可形成极稳定的络合物,再去炔化银中加入氰化钠水溶液可得回炔烃。如 RC≡CAg+2CN-+H2O——>RC≡CH+Ag(CN)2- +OH- 也可以通过这个反应提纯末端炔烃。 2.末端烯烃的卤化 末端炔烃与次卤酸反应,可以得到炔基卤化物。 RC≡CH+HOBr——>RC≡CBr+H2O 3.末端炔烃与醛、酮的反应 乙炔及末端炔烃在碱的催化下,可形成炔碳负离子,作为亲核试剂与羰基进行亲核加成,生成炔醇。 炔烃的还原1.催化加氢 在常用催化剂钯、铂或镍的作用下,炔烃与2 mol H2 加成,生成烷烃。中间产物难以分离得到。 若用Lindlar(林德拉)催化剂(钯附着于碳酸钙及小量氧化铅上,使催化剂活性降低)进行炔烃的催化氢化反应,则炔烃只加 1 mol H2 得Z型烯烃。例如,一个天然的含三键的硬脂炔酸,在该催化剂作用下,生成与天然的顺型油酸完全相同的产物。 用硫酸钡作载体的钯催化剂在吡啶中也可以使碳碳三键化合物只加 1 mol H2,生成顺型的烯烃衍生物。这表明,催化剂的活性对催化加氢的产物有决定性的影响。炔烃的催化加氢是制备Z型烯烃的重要方法,在合成中有广泛的用途。 2.硼氢化—还原 炔烃与乙硼烷反应生成烯基硼烷,烯基硼烷与醋酸反应,生成Z型烯烃。第一步反应是炔烃的硼氢化反应,第二步反应是烯基硼的还原反应,总称硼氢化—还原反应。 3.用碱金属和液氨还原 炔类化合物在液氨中用金属钠还原,主要生成E型烯烃衍生物。 4.用氢化铝锂还原 炔烃用氢化铝锂还原也能得到E型烯烃。 烯烃的亲电加成乙炔及其取代物与烯烃相似,也可以发生亲电加成反应,但由于sp碳原子的电负性比sp2碳原子的电负性强,使电子与sp碳原子结合得更为紧密,尽管三键比双键多一对电子,也不容易给出电子与亲电试剂结合,因而使三键的亲电加成反应比双键的亲电加成反应慢。 乙炔及其衍生物可以和两分子亲电试剂反应。先是与一分子试剂反应,生成烯烃的衍生物,然后再与另一分子试剂反应,生成饱和的化合物。不对称试剂和炔烃加成时,也遵循马氏规则,多数加成是反式加成。 1.和卤素的加成 卤素和炔烃的加成为反式加成。反应机理与卤素和烯烃的加成相似,但反应一般较烯烃难。例如,烯烃可使溴的四氯化碳溶液立刻褪色,炔烃却需要几分钟才能使之褪色。故分子中同时存在非共轭的双键和三键,在它与溴反应时,首先进行的是双键的加成。 又如,乙炔与氯的加成反应须在光或三氯化铁或氯化亚锡的催化作用下进行,中间产物为反二氯乙烯,最后产产物为1,1,2,2-四氯乙烷。 2.和氢卤酸的加成 炔烃和氢卤酸的加成反应是分两步进行的,选择合适的反应条件,反应可控制在第一步。这也是制卤化烯的一种方法。 一元取代乙炔与氢卤酸的加成反应遵循马氏规则。 当炔键的两侧都有取代基时,需要比较两者的共轭效应和诱导效应,来决定反应的区域选择性,但一般得到的是两种异构体的混合物。 3.和水的加成 烯烃和水的加成常用汞盐作催化剂。例如,乙炔和水的加成是在10%硫酸和5%硫酸亚汞水溶液中发生的。 水先与三键加成,生成一个很不稳定的加成物——乙烯醇[羟基直接和双键碳原子相连的化合物称为烯醇]。乙烯醇很快发生异构化,形成稳定的羰基化合物。 炔烃与水的加成遵循马氏规则,因此除乙炔外,所有的取代乙炔和水的加成物都是酮,但亿元取代乙炔与水的加成物为甲基酮,二元取代乙炔的加水产物通常是两种酮的混合物。 炔烃的自由基加成有过氧化物存在时,炔烃和溴化氢发生自由基加成反应,得马氏规则的产物。 炔烃的亲核加成1.炔烃和氢氰酸的加成 氢氰酸可与乙炔发生亲核加成反应。 反应中CN-受限于三键进行亲核加成形成碳负离子,再与质子作用,完成生成丙烯腈的反应。上法因乙炔成本较高,现世界上几乎都采用丙烯的氨氧化反应制丙烯腈,反应过程是丙烯与氨的混合物在400~500℃,在催化的作用下用空气氧化。 聚丙烯腈可用于合成纤维(腈纶)、塑料、丁腈橡胶。此外,丙烯腈电解加氢二聚,是一个新的成功合成己二腈的方法。 己二腈加氢得己二胺,己二腈水解得己二酸,是制造尼龙-66的原料。 2.炔烃和含活泼氢的有机物反应 乙炔或其一元取代物可与带有下列“活泼氢”的有机物,如—OH,—SH,—NH2,=NH,—CONH2或—COOH发生加成反应,生成含有双键的产物。例如乙醇在碱催化下于150~180℃,0.1~1.5MPa下与乙炔反应,生成乙烯基乙醚。 根据原料的不同,反应条件(即温度、压力i、催化剂等)也可以不同。这类反应的反应机理是烷氧负离子与三键进行亲核加成,产生一个碳负离子中间体,碳负离子中间体从醇分子中得到质子,得产物。 乙烯基乙醚聚合后的聚乙烯基乙醚,常用作黏合剂。 炔烃的氧化炔烃经臭氧或高锰酸钾氧化,可发生碳碳三键的断裂,生成两个羧酸。 【炔烃的鉴别和结构测定】 和炔烃的氧化一样,根据高锰酸钾溶液的颜色变化可以鉴别炔烃,根据所得产物的结构可推知原炔烃的结构。 一元取代乙炔通过硼氢化—氧化可制得烯基硼烷,该加成反应式反马氏规则的,烯基硼烷在碱性过氧化氢中氧化,得烯醇,异构化后生成醛。 二元取代乙炔,通常得到两种铜的混合物。 乙炔的聚合乙炔在不同的催化剂作用下,可有选择地聚合成链形或环状化合物。例如在氯化亚铜或氯化铵的作用下,可以发生二聚或三聚作用,生成苯。但这个反应苯的产量很低,同时还产生许多其他的芳香族副产物,因而没有制备价值,但为研究苯的结构提供了有力的线索。 除了三聚环状物外,乙炔在四氢呋喃中,经氰化镍催化,于1.5~2MPa、50℃时聚合,可产生环辛四烯。 目前尚未发现环辛四烯的重大工业用途,但该化合物在认识芳香族化合物的过程中,起着很大的作用。以往认为乙炔不能在加压下进行反应,因为他受压后,很容易爆炸。后来发现将乙炔用氮气稀释,可以安全地在加压下进行反应,因而开辟了乙炔的许多新型反应,制备出许多重要的化合物。环辛四烯就是其中一个。 炔烃的制备乙炔的工业生产用煤或石油作原料,是生产乙炔的两种主要途径。随着天然气化学工业的发展,天然气即将成为乙炔的主要来源。生产乙炔的重要方法有下列几种: 1.碳化钙(电石法) 以前这是大工业生产乙炔的唯一方法,即用焦炭和氧化钙经电弧加热至2200℃,制成碳化钙,它再与水反应,生成乙炔和氢氧化钙: CaO+3C<—2200℃—>CaC2+CO ΔH=460KJ/mol CaC2+2H2O——>C2H2+Ca(OH)2 此法成本较高,现在除少数国家外,均不用此法。 2.甲烷法(电弧法) 甲烷在1500℃电弧中经极短时间(0.1~0.01s)加热,裂解成乙炔,即 2CH4——>C2H2+3H2 ΔH=397.4KJ/mol 由于乙炔在高温很快分解成碳,故反应气须用水很快地冷却,乙炔产率约15%,改用气流冷却反应气,可提高乙炔产率达25%~30%。裂解气中还含有乙烯、氢和碳尘。这个方法的总特点是原料非常便宜,在天然气丰富的地区采用这个方法是比较经济的。石脑油也可用此方法生产乙炔。 3.等离子法 用石油和极热的氢气一起热裂制备乙炔,即把氢气在3500~4000℃的电弧中加热,然后部分等离子化的等离子体氢(正负离子相等)于电弧加热器出口的分离反应室中与气体的或气化了的石油气反应,生成的产物有:乙炔、乙烯(二者的总产率在70%以上)以及甲烷和氢气。 乙炔过去是非常重要的有机合成原料,但由于乙炔的生产成本相当高,最近几十年来,以乙炔为原料生产化学品的路线逐渐被其他化合物(特别是乙烯、丙烯)为原料的路线所取代。 纯的乙炔是带有乙醚气味的气体,具有麻醉作用,燃烧时火焰明亮,可用以照明。工业乙炔不好闻气味是由于含有硫化氢、磷化氢、以及有机磷、硫化合物等杂质引起的。与乙烯、乙烷不同,乙炔在水中具有一定的溶解度,但易溶于丙酮。液化乙炔经碰撞、加热可发生剧烈爆炸,乙炔与空气混合、当它的含量达到3~70%时,会剧烈爆炸。商业上为安全地处理乙炔,把他装入钢瓶中,瓶内装有多孔材料,如硅藻土、浮石或木炭,再装入丙酮。丙酮在常压下,约可溶解相当于它体积25倍的乙炔,而在1.2MPa下可溶解相当其体积300倍的乙炔。乙炔和氧气混合燃烧,可产生2800℃的高温,用以焊接或切割钢铁及其他金属。 由二元卤代烷制备邻二卤代烷和偕二卤代烷在碱性实际点作用下失去两分子卤化氢生成炔烃。常用的碱性试剂有氢氧化钠或氢氧化钾的醇溶液和氨基钠的矿物油。 用末端烯烃的制备乙炔与NaNH2(KNH2、LiNH2均可)再液氨中形成乙炔化钠,然后与卤代烷发生SN2反应,形成一元取代乙炔。 卤代烷以一级最好,β位有侧链的以及卤代烷及二级、三级卤代烷易发生消除反应,不能用于合成。一元取代乙炔可进一步用于合成二元取代乙炔。 末端烯烃直接氧化偶联可用来制备高级炔烃。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。