请输入您要查询的百科知识:

 

词条 权方和不等式
释义

权方和不等式的形式:

对于xi,yi>0,当m(m+1)>0时:

(x1+x2+x3+…………+xi+……+xn)^(m+1)/(y1+y2+y3+…………+yi+……+yn)^m≤{[x1^(m+1)/y1^m]+[x2^(m+1)/y2^m]+[x3^(m+1)/y3^m]+…………+[xi^(m+1)/yi^m]+……+[xn^(m+1)/yn^m]}.

m(m+1)=0时:

(x1+x2+x3+…………+xi+……+xn)^(m+1)/(y1+y2+y3+…………+yi+……+yn)^m={[x1^(m+1)/y1^m]+[x2^(m+1)/y2^m]+[x3^(m+1)/y3^m]+…………+[xi^(m+1)/yi^m]+……+[xn^(m+1)/yn^m]}.

m(m+1)<0时:

(x1+x2+x3+…………+xi+……+xn)^(m+1)/(y1+y2+y3+…………+yi+……+yn)^m≥{[x1^(m+1)/y1^m]+[x2^(m+1)/y2^m]+[x3^(m+1)/y3^m]+…………+[xi^(m+1)/yi^m]+……+[xn^(m+1)/yn^m]}.

其中n是正整数。

取等号的条件:x1/y1=x2/y2=x3/y3=…………=xi/yi=……=xn/yn.

权方和不等式的证明:

其证明需要用到赫尔德(Holder)不等式.

赫尔德不等式的形式(特殊情形):

对于实数p和q,若p≥1,q<+∞,且1/p+1/q=1.

则对于所有实数或复数a1,a2,a3…………ai……an和b1,b2,b3…………bi……bn

恒有|a1b1|+|a2b2|+|a3b3|+…………+|aibi|+……+|anbn|≤

[(|a1|^p+|a2|^p+|a3|^p+…………+|ai|^p+……+|an|^p)^(1/p)]*

[(|b1|^q+|b2|^q+|b3|^q+…………+|bi|^q+……+|bn|^q)^(1/q)]

当且仅当a1^p/b1^q=a2^p/b2^q=a3^p/b3^q=…………=ai^p/bi^q=……=an^p/bn^q时等号成立。

证明:

第一式:因为m(m+1)>0,所以m>0或m<-1.

设ai=xi/yi^[m/(m+1)] bi=yi^[m/(m+1)]

p=m+1 q=(m+1)/m

m>0时,p>1,q<+∞成立,且1/p+1/q=1.

所以对于ai、bi>0,恒有:

|a1b1|+|a2b2|+|a3b3|+…………+|aibi|+……+|anbn|≤

[(|a1|^p+|a2|^p+|a3|^p+…………+|ai|^p+……+|an|^p)^(1/p)]*

[(|b1|^q+|b2|^q+|b3|^q+…………+|bi|^q+……+|bn|^q)^(1/q)]

也就是x1+x2+x3+…………+xi+……+xn≤{[x1^(m+1)/y1^m]+[x2^(m+1)/y2^m]+

[x3^(m+1)/y3^m]+…………+[xi^(m+1)/yi^m]+……+[xn^(m+1)/yn^m]}^[1/(m+1)]

*{(y1+y2+y3+…………+yi+……+yn)^[m/(m+1)]}

不等式两边同时取(m+1)次幂,得到:

(x1+x2+x3+…………+xi+……+xn)^(m+1)≤{[x1^(m+1)/y1^m]+[x2^(m+1)/y2^m]+

[x3^(m+1)/y3^m]+…………+[xi^(m+1)/yi^m]+……+[xn^(m+1)/yn^m]}*

(y1+y2+y3+…………+yi+……+yn)^m

不等式两边同除(y1+y2+y3+…………+yi+……+yn)^m,就得到

(x1+x2+x3+…………+xi+……+xn)^(m+1)/(y1+y2+y3+…………+yi+……+yn)^m≤{[x1^(m+1)/y1^m]+[x2^(m+1)/y2^m]+[x3^(m+1)/y3^m]+…………+[xi^(m+1)/yi^m]+……+[xn^(m+1)/yn^m]}.

另设ai=yi/xi^[(m+1)/m],bi=xi^[(m+1)/m]

p=-m q=m/(m+1)

当m1,q<+∞成立,且1/p+1/q=1.

所以对于ai、bi>0,恒有:

|a1b1|+|a2b2|+|a3b3|+…………+|aibi|+……+|anbn|≤

[(|a1|^p+|a2|^p+|a3|^p+…………+|ai|^p+……+|an|^p)^(1/p)]*

[(|b1|^q+|b2|^q+|b3|^q+…………+|bi|^q+……+|bn|^q)^(1/q)].

也就是y1+y2+y3+…………+yi+……+yn≤(x1+x2+x3+…………+xi+……+xn)^[(m+1)/m]

*{[x1^(m+1)/y1^m]+[x2^(m+1)/y2^m]+[x3^(m+1)/y3^m]+…………+[xi^(m+1)/yi^m]+……+[xn^(m+1)/yn^m]}^(-1/m).

不等式两边同时做m次幂,此时不等号方向改变:

(y1+y2+y3+…………+yi+……+yn)^m≥(x1+x2+x3+…………+xi+……+xn)^(m+1)

*{[x1^(m+1)/y1^m]+[x2^(m+1)/y2^m]+[x3^(m+1)/y3^m]+…………+[xi^(m+1)/yi^m]+……+[xn^(m+1)/yn^m]}^(-1)

不等式两边取倒数(不等号方向改变)再同乘(x1+x2+x3+…………+xi+……+xn)^(m+1),即得:

(x1+x2+x3+…………+xi+……+xn)^(m+1)/(y1+y2+y3+…………+yi+……+yn)^m≤{[x1^(m+1)/y1^m]+[x2^(m+1)/y2^m]+[x3^(m+1)/y3^m]+…………+[xi^(m+1)/yi^m]+……+[xn^(m+1)/yn^m]}.

第一式得证。

第二式的证明:

m就-1和0两种取值。

m=0时,原式简化为x1+x2+x3+…………+xi+……+xn=x1+x2+x3+…………+xi+……+xn显然成立;

m=-1时,原式简化为y1+y2+y3+…………+yi+……+yn=y1+y2+y3+…………+yi+……yn显然成立.

第二式得证。

第三式的证明:

设ai=yi^(-m),bi=xi^(m+1).

p=-1/m,q=1/(m+1).

当m(m+1)m>-1.

此时p>1,q<+∞成立,且1/p+1/q=1.

所以对于ai、bi>0,恒有:

|a1b1|+|a2b2|+|a3b3|+…………+|aibi|+……+|anbn|≤

[(|a1|^p+|a2|^p+|a3|^p+…………+|ai|^p+……+|an|^p)^(1/p)]*

[(|b1|^q+|b2|^q+|b3|^q+…………+|bi|^q+……+|bn|^q)^(1/q)].

也就是[x1^(m+1)/y1^m]+[x2^(m+1)/y2^m]+[x3^(m+1)/y3^m]+…………+[xi^(m+1)/yi^m]+……+[xn^(m+1)/yn^m]≤[(x1+x2+x3+…………+xi+……+xn)^(m+1)]/[(y1+y2+y3+…………+yi+……+yn)^m].

第三式得证。

证毕.

最后说一下取等号的条件:赫尔德不等式取等号的条件是:

当且仅当a1^p/b1^q=a2^p/b2^q=a3^p/b3^q=…………=ai^p/bi^q=……=an^p/bn^q时等号成立。

所以第一式中,取等号的条件分别是:

m>0时候:

x1^(m+1)/y1^(m+1)=x2^(m+1)/y2^(m+1)=x3^(m+1)/y3^(m+1)=…………=

xi^(m+1)/yi^(m+1)=……=xn^(m+1)/yn^(m+1).

m<-1时候:

x1^m/y1^m=x2^m/y2^m=x3^m/y3^m=…………=xi^m/yi^m=……=xn^m/yn^m.

第三式中,取等号的条件是:

0>m>-1时候:

y1/x1=y2/x2=y3/x3=…………=yi/xi=……=yn/xn.

由于xi、yi都是正数(也正因为这样,利用赫尔德不等式证明权方和不等式时才能把绝对值符号去掉),所以可以分别通过开(m+1)、m、-1次方简化为:

x1/y1=x2/y2=x3/y3=…………=xi/yi=……=xn/yn时等号成立。

对权方和不等式的进一步说明:

权方和不等式是在高中竞赛中很有用的一个不等式,常用来处理分式不等式。

它和赫尔德不等式的这个特殊情形是等价关系。

其中m称为不等式的权,特点是分子次数比分母高一次。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/2/25 6:48:23