词条 | 切割线定理 |
释义 | 定理切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。是圆幂定理的一种。几何语言: ∵PT切⊙O于点T,PBA是⊙O的割线 ∴PT的平方=PA·PB(切割线定理)推论: 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 几何语言: ∵PT是⊙O切线,PBA,PDC是⊙O的割线 ∴PD·PC=PA·PB(切割线定理推论)(割线定理) 由上可知:PT∧2(平方)=PA·PB=PC·PD 证明切割线定理证明: 设ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,则PT^2=PA·PB 证明:连接AT, BT ∵∠PTB=∠PAT(弦切角定理)∠P=∠P(公共角) ∴△PBT∽△PTA(两角对应相等,两三角形相似) 则PB:PT=PT:AP 即:PT^2=PB·PA 比较相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们的推论统称为圆幂定理。一般用于求直线段长度。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。