词条 | 切比雪夫不等式 |
释义 | 切比雪夫(Chebyshev)不等式 对于任一随机变量X ,若EX与DX均存在,则对任意ε>0, 恒有P{|X-EX|>=ε}<=DX/ε^2 或P{|X-EX|<ε}>=1-DX/ε^2 切比雪夫不等式说明,DX越小,则 P{|X-EX|>=ε} 越小,P{|X-EX|<ε}越大, 也就是说,随机变量X取值基本上集中在EX附近,这进一步说明了方差的意义。 同时当EX和DX已知时,切比雪夫不等式给出了概率P{|X-EX|>=ε}的一个上界,该上界并不涉及随机变量X的具体概率分布,而只与其方差DX和ε有关,因此,切比雪夫不等式在理论和实际中都有相当广泛的应用。需要指出的是,虽然切比雪夫不等式应用广泛,但在一个具体问题中,由它给出的概率上界通常比较保守。 切比雪夫不等式是指在任何数据集中,与平均数超过K倍标准差的数据占的比例至多是1/K^2。 在概率论中,切比雪夫不等式显示了随机变数的「几乎所有」值都会「接近」平均。这个不等式以数量化这方式来描述,究竟「几乎所有」是多少,「接近」又有多接近: 与平均相差2个标准差的值,数目不多于1/4 与平均相差3个标准差的值,数目不多于1/9 与平均相差4个标准差的值,数目不多于1/16 …… 与平均相差k个标准差的值,数目不多于1/K^2 举例说,若一班有36个学生,而在一次考试中,平均分是80分,标准差是10分,我们便可得出结论:少于50分(与平均相差3个标准差以上)的人,数目不多于4个(=36*1/9)。 测度论说法设(X,Σ,μ)为一测度空间,f为定义在X上的广义实值可测函数。对於任意实数t > 0, 一般而言,若g是非负广义实值可测函数,在f的定义域非降,则有 上面的陈述,可透过以|f|取代f,再取如下定义而得: 概率论说法设X为随机变数,期望值为μ,方差为σ2。对于任何实数k>0, 改进 一般而言,切比雪夫不等式给出的上界已无法改进。考虑下面例子: 这个分布的标准差σ = 1 / k,μ = 0。 当只求其中一边的值的时候,有Cantelli不等式: [1] 证明定义,设为集的指标函数,有 又可从马尔可夫不等式直接证明:马氏不等式说明对任意随机变数Y和正数a有\\Pr(|Y| \\le \\opeatorname{E}(|Y|)/a。取Y = (X ? μ)2及a = (kσ)2。 亦可从概率论的原理和定义开始证明: 参见马尔可夫不等式 弱大数定律 分类: 概率论 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。