词条 | 牵引供电 |
释义 | 1879年5月,德国西门子和哈尔斯公司建造了世界上第一条电气化铁路。100多年来,随着电机电器制造工业、电子工业和电力工业的发展,电气化铁路运输以其巨大的经济效益受到世界各国的普遍重视,得到飞速发展。 牵引供电电流制(一、直流制 二、低频单相交流制 三、三相交流制 四、工频单相交流制) 牵引供电方式(一、直接供电方式(TR) 二、BT(吸流变压器)供电方式 三、AT(自偶变压器)供电方式 四、直供+回流(DN)供电方式(TRNF) 五、同轴电力电缆供电方式) 牵引供电系统组成(一、一次供电网络 二、牵引变电所 三、牵引网 四、分区所 五、开闭所) 牵引供电绪论我国铁路电气化事业起始于1956年。1961年8月宝成铁路(宝鸡至成都)宝鸡至凤州段电气化通车;1975年6月宝成铁路全线电气化通车,成为我国第一条电气化铁路。宝成铁路电气化后,该铁路的运能、运量大幅度的增长,推动了我国铁路电气化事业的发展。目前,电气化铁路已经占据了我国铁路发展的绝对主导地位。我国的电气化铁路正逐步向高速铁路发展,以2007年动车组的运行为标志,我国的电气化铁路将迈入世界先进行列。 自1961年8月15日,我国第一条电气化铁路-宝成铁路铁路建成通车,到1980年底,共建成电气化铁路1679.6km,平均每年修建电气化铁路还不到100km,十一届三中全会确定了以经济建设为中心的基本路线。随着我国改革开放的不断向前推进,我国的电气化铁路建设有了较快的发展,在“六五”、“七五”期间共修建了电气化铁路5294.63km,平均每年修建已超过500km, 到2005年,中国电气化铁路总里程达20000公里,截至到2008年10月,中国电气化铁路总里程已达26000公里。 牵引供电系统概述牵引供电是指拖动车辆运输所需电能的供电方式。牵引供电系统是指铁路从地方引入220(110)KV电源,通过牵引变电所降压到27.5KV送至电力机车的整个供电系统。 例如城市电车,地铁等,我们主要研究的内容是电气化铁道牵引供电系统。在我们这里简称牵引供电系统。 牵引供电优缺点牵引供电的优越性电气化铁路运输电力牵引的优越性主要体现在如下几个方面: 1、电力牵引可节约能源,综合利用能源 2、电力牵引可提高列车的牵引重量,提高列车的运行速度 3、电力牵引制动功率大,运行时安全性高强 4、电气化铁路运输的成本费用低 5、电力牵引易于实现自动化,利用采用先进科学技术,利于改善劳动条件,利于环境保护 牵引供电的缺点电气化铁路运输电力牵引的缺点主要体现在如下几个方面: 1、基本建设投资较大。 2、对电力系统存在某些不利因素。 因为牵引供电用电是单相负荷,将会在电力系统中产生较大的负序电流和负序电压,而且电力机车的功率因数较低,高次谐波含量较大等都会给电力系统造成不良影响。 3、对铁路沿线附近的通讯线路造成一定的电磁干扰。 4、接触网需要停电检修,要求在列车运行图中留有一定的天窗时间,在此时间内列车要停止运行。 牵引供电电流制电力牵引采用的电流、电压制式。根据各国的国情不同,主要有如下几种形式: 一、直流制世界上最早采用的电流制。截至目前,世界上仍占43%左右。这种电气化铁路采用600V、1500V、3000V或6000V的直流电,向直流电力机车供电。 其主要优点是:可以简化机车设备。 其主要缺点是: 1、供电电压低(通常只有1500v); 2、线路损耗大,供电距离短(≤20-30km)。 主要运用于矿山1500v;城市电车650-800v;地铁600-1500v。 二、低频单相交流制20世纪初,西欧一些国家采用,发展很好。这种电气化铁路采用11KV、25Hz;15KV、50/3Hz的单相交流电向电力机车供电。 低频单相交流制频率:16又2/3,电压11-15kv。 低频单相交流制采用原因及优点: 1、有低频的工业电力; 2、整流简单;电抗较小; 3、和直流制相比,导线截面小送电距离长(50~70km)。 缺点:供电频率与工业供电频率不同,故须有变频装置或由铁路专用的低频发电厂供电。 三、三相交流制个别国家,如瑞士、法国等采用3.6kv的三相交流制,电力机车采用三相交流异步电动机,部分胶轮轨道交通系统也使用三相交流供电。 其主要优点是: 1、三相对称,不影响电力系统稳定性; 2、牵引变电所和电力机车结构相对简化; 3、三相异步电动机运行可靠、维护方便;机车功率大、速度高、功率因数高(接近于1); 4、能将无功功率、通讯干扰减到最小。 缺点:机车供电线路复杂,异步电动机调速比较困难。 四、工频单相交流制是电气化铁道发展中的一项先进供电制,最早出现在匈牙利,电压16kv,1950年法国试建了一条25kv的单相工频交流电气化铁道,随后日本、前苏联等相继采用(20kv)目前该种电流制已占到40%以上。这种电气化铁路采用25KV工频单相交流电向电力机车供电。这是一种比较先进的电流、电压制,它引起了世界各国的重视。我国的电气化铁路从开始就采用了这种工频单相交流牵引制,为我国电气化铁路的发展奠定了良好的基础。 其主要优点是: 1、供电系统结构简单。牵引变电所从电力系统获得电能,经过电压变换后直接供给牵引网; 2、供电电压增高,既可保证大功率机车的供电,提高机车牵引定数和运行速度,又可使变电所之间的距离延长,导线面积减小,建设投资和运营费用显著降低; 3、交流电力机车的粘着性和牵引性能良好,牵引电动机可在全并联状态下运行,防止轮对空转的恶性发展。从而提高了运用粘着系数; 4、和直流制比,减小了地中电流对地下金属的腐蚀作用,一般可不设专门的防护装置。 牵引供电方式一、直接供电方式(TR)直接供电方式较为简单,是将牵引变电所输出的电能直接供给电力机车的一种供电方式,主要设备有牵引变压器、断路器、隔离开关、所用变、电压互感器、电流互感器、母线、接地系统、交流盘、直流盘、硅整流盘、控制盘、保护盘等设备。 直供方式的优点:结构简单、投资省 缺点:由于牵引供电系统为单相负荷,该供电方式的牵引回流为钢轨,是不平衡的供电方式,对通信线路产生感应影响大。 回路电阻大,供电距离短(十几公里) 。 二、BT(吸流变压器)供电方式这种供电方式,在接触网上每隔一段距离装一台吸流变压器(变比为1:1),其原边串入接触网,次边串入回流线(简称NF线,架在接触网支柱田野侧,与接触悬挂等高),每两台吸流变压器之间有一根吸上线,将回流线与钢轨连接,其作用是将钢轨中的回流“吸上”去,经回流线返回牵引变电所,起到防干扰效果。 由于大地回流及所谓的“半段效应”,BT供电方式的防护效果并不理想,加之“吸——回”装置造成接触网结构复杂,机车受流条件恶化,近年来已很少采用。 三、AT(自偶变压器)供电方式采用AT供电方式时,牵引变电所主变输出电压为55kV,经AT(自耦变压器,变比2:1)向接触网供电,一端接接触网,另一端接正馈线(简称AF线,亦架在田野侧,与接触悬挂等高),其中点抽头则与钢轨相连。AF线的作用同BT供电方式中的NF线一样,起到防干扰功能,但效果较前者为好。此外,在AF线下方还架有一条保护(PW)线,当接触网绝缘破坏时起到保护跳闸作用,同时亦兼有防干扰及防雷效果。 显然,AT供电方式接触网结构也比较复杂,田野侧挂有两组附加导线,AF线电压与接触网电压相等,PW线也有一定电位(约几百伏),增加故障几率。当接触网发生故障,尤其是断杆事故时,更是麻烦,抢修恢复困难,对运输干扰极大。但由于牵引变电所馈出电压高,所间距可增加一倍,并可适当提高末端网压,在电力系统网络比较薄弱的地区有其优越性。 四、直供+回流(DN)供电方式(TRNF)带回流线的直接供电方式取消BT供电方式中的吸流变压器,保留了回流线,利用接触网与回流线之间的互感作用,使钢轨中的回流尽可能地由回流线流回牵引变电所,因而部分抵消接触网对临近通信线路的干扰,其防干扰效果不如BT供电方式,通常在对通信线防干扰要求不高的区段采用。这种供电方式设备简单,因此供电设备的可靠性得到了提高;由于取消了吸流变压器,只保留了回流线,因此牵引网阻抗比直供方式低一些,供电性能好一些,造价也不太高,所以这种供电方式在我国电气化铁路上得到了广泛应用。 这种供电方式实际上就是带回流线的直接供电方式,NF线每隔一定距离与钢轨相连,既起到防干扰作用,又兼有PW线特性。由于没有吸流变压器,改善了网压,接触网结构简单可靠。近年来得到广泛应用。 五、同轴电力电缆供电方式同轴电力电缆供电方式是在牵引网中沿铁路埋设同轴电力电缆,其内部导体作为馈电线与接触网并联,外部导体作为回流线与钢轨并联的供电方式。 这种供电方式由于投资大,一般不采用。 牵引供电系统组成主要由牵引变电所和牵引网两部分组成。主要作用是从电力系统取得电能,并送给沿铁路线运行的机车。牵引变电系统组成部分: 一、高压架空输电线路 二、牵引变电所 三、接触网 四、馈电线 五、轨道 六、回流线 七、分区所(亭) 一、一次供电网络指直接向牵引变电所供电的地区变电所(或发电厂)及高压输电线路。 以牵引变电所进线门型架为分界点。 二、牵引变电所牵引变电所的功能是将三相的110KV(或220KV)高压交流电变换为两个单相的27.5KV的交流电,然后向铁路上、下行两个方向的接触网(额定电压为25KV)供电。 牵引变电所的作用: 1、变换电压。 2、集中、分配电能。 3、调整电压。 三、牵引网由馈电线、接触网、钢轨、回流线组成的双导线供电系统。 馈电线是连接变电所和接触网之间的架空铝导线。 接触网直接把从牵引变电所获得的电能供给电力机车,其质量和工作状态直接影响着电气化铁路运输能力。由于接触网是露天设置,没有备用,线路上的负荷又随电力机车的运行而沿接触线移动和变化,对接触网提出以下要求: 1、 在高速运行和恶劣的气候条件下,能保证电力机车正常取流,要求接触网在机械结构上有良好的稳定性和弹性。 2 、接触网设备对地绝缘要符合技术要求,安全可靠。 3 、要求接触网的设备.零件具有足够的耐磨性和抗腐浊能力,以期延长使用年限。 4 、要求接触网结构.设备尽量简单,零件互换性好,便于施工,维修。在事故情况下便于抢修和迅速恢复送电。 5、 尽可能降低成本,特别要注意节约有色金属及钢材。 四、分区所为了增加供电的灵活性,提高运行可靠性,在相邻变电所供电的接触网区段通常加设分区所。 分区所的作用: 1、使同一供电分区的上、下行接触网并联工作或单独工作。当并联工作时,分区所(亭)内的断路器闭合以提高接触网的末端电压;单独工作时,断路器打开。 2、单边供电的同一供电分区上、下行接触网(并联工作)内发生短路事故时,由牵引变电所中的馈线断路器和分区所(亭)中的断路器配合动作,切除事故区段,缩小事故范围。非事故区段仍可照常工作。 3、当某牵引变电所全所停电时,可闭合分区所(亭)中与分相绝缘器并联的隔离开关(或断路器),由相邻牵引变电所向停电牵引变电所的供电分区临时越区供电。 五、开闭所枢纽站场(如编组场、客场、机车整备线等),为提高供电可靠性和灵活性,通常将其分组独立供电,为此增设了开闭所。如果是复线区段,通过开闭所的断路器可将接触网上下行并联起来,兼分区所运行。 开闭所的作用: 1、开闭所不进行电压变换,只起扩大馈线回路数的作用,相当于配电所; 2、将供电臂分段,事故时缩小事故范围,提高供电可靠性; 3、保证枢纽站,场装卸作业和接触网分组检修的灵活性,安全性; 4、降低牵引变电所的复杂程度。 牵引变电所一次供电方式又称一次侧或外部供电方式,具体分为以下三种: 1、一边供电:变电所两路电源由电力系统的一个方向送来。 2、两边供电:变电所两路电源由电力系统的两个方向送来。 3、环形供电:是指若干个发电厂、地区变电所通过高压输电线路连接成环形电力网,而牵引变电所处于环形电力网系统中的一段环路之中。 两边供电和环形供电比一边供电具有更高的可靠性和更好的供电质量。两边供电的优点是任一发电厂故障,电气化铁道的供电不会中断,环形供电则更为稳定,因此牵引变电所一次供电方式应尽可能采用两边供电或环形供电。 牵引变电所的电源通常采用几种不同的供电方式。 牵引变电所引入线方式又称牵引变电所一次侧主接线,目前采用的主接线有三种: 1、桥接线:分外桥接线和内桥接线。 2、双T接线,又称分支接线,即两路输电线路分别引出两条支线到牵引变电所,构成双T,其应用最广。 3、单母线分段接线:当牵引变电所除了两回电源引入线外,还需引出线的中心变电所,通常采用这种方式。图中分段断路器既能经常通过穿越功率,又可在必要时将母线分为两段,以提高供电的可靠性和灵活性。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。