词条 | 欧拉示性数 |
释义 | 假设曲面上有一个三角剖分, 我们把所有三角形的顶点总个数记为p(公共顶点只看成一个,下同),边数记为l,三角形的个数记为n,则e=p-l+n是曲面的拓扑不变量! 也就是说不管是什么剖分, e总是得到相同的数值。 e被称为称为欧拉示性数。 假设g是曲面上洞眼的个数(比如球面没有洞,故g=0;又如环面有一个洞,故g=1),那么e=2-2g。 g也是拓扑不变量,称为曲面的亏格(genus)。 因此在平面上,e=2=p-l+n, 此即著名的欧拉公式。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。