词条 | 幂指函数 |
释义 | 将形如y=[f(x)]^g(x)的函数称为幂指函数。也就是说,它既像幂函数,又像指数函数,二者的特点兼而有之。作为幂函数,其幂指数确定不变,而幂底数为自变量;相反地,指数函数却是底数确定不变,而指数为自变量。幂指函数就是幂底数和幂指数同时都为自变量的函数。这种函数的推广,就是广义幂指函数。 最简单的幂指函数就是y=x^x。说简单,其实并不简单,因为当你真正深入研究这种函数时,就会发现,在x<0时,函数图象存在“黑洞”——无数个间断点,如右图所示(用虚线表示)。其实这种现象与幂函数有着内在的联系,也就是说,幂函数也存在x<0时非整指数幂x^(n/2m)的漏洞,这一问题有待专家学者们认真研究后,统一思想,妥善解决。 在x>0时,函数曲线是连续的,并且在x=1/e处取得极小值e^-(1/e)≈0.6922,在区间(0,1/e]上单调递减,而在区间[1/e,+∞)上单调递增,并过(1,1)点。 在x<0时,函数曲线是间断的,且有无数个间断点,同时,函数曲线以x轴准(近似)对称,函数图象夹于二平行直线y=-e^(1/e)≈-1.4447和y=e^(1/e)≈1.4447之间,并在x→-∞时,双尾收敛于y=0。 此外,从函数y=x^x的图象可以清楚看出,0^0是不存在的。这就是为什么在初等代数中明文规定“任意非零实数的零次幂都等于1,零的任意非零非负次幂都等于零”的真正原因。 下面给出一般幂指函数的求导方法(详见下图)。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。