请输入您要查询的百科知识:

 

词条 幂函数
释义

一般地,形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

概念

形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

当a取非零的有理数时是比较容易理解的,而对于a取无理数时,初学者则不大容易理解了。因此,在初等函数里,我们不要求掌握指数为无理数的问题,只需接受它作为一个已知事实即可,因为这涉及到实数连续性的极为深刻的知识。

特性

对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

首先我们知道如果a=p/q,且p/q为既约分数(即p、q互质),q和p都是整数,则x^(p/q)=q次根号下(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数a是负整数时,设a=-k,则y=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)。因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

a小于0时,x不等于0;

a的分母为偶数时,x不小于0;

a的分母为奇数时,x取R。

定义域与值域

当a为不同的数值时,幂函数的定义域的不同情况如下:

1.如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数, 则x不能小于0,这时函数的定义域为大于等于0的所有实数;2.如果同时q为奇数,则函数的定义域为不等于0 的所有实数。

当x为不同的数值时,幂函数的值域的不同情况如下:

1.在x大于0时,函数的值域总是大于0的实数。

2. 在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

而只有a为正数,0才进入函数的值域。

由于x大于0是对a的任意取值都有意义的,

因此下面给出幂函数在第一象限的各自情况.

第一象限的特殊性

可以看到:

(1)所有的图形都通过(1,1)这点.(a≠0) a>0时 图象过点(0,0)和(1,1)

(2)当a大于0时,幂函数为单调递增为增函数,但y=x^2,在(-∞,0)上单调递减。

而a小于0时,幂函数为单调递减为减函数。

(3)当a大于1时,幂函数图形下凸(竖抛);当a小于1大于0时,幂函数图形上凸(横抛)。当a小于0时,图像为双曲线。

(4)当a小于0时,a越小,图形倾斜程度越大。

(5)显然幂函数无界限。

(6)a=2n,该函数为偶函数 {x|x≠0}。

图象

幂函数的图象:

①当a≤-1且a为奇数时,函数在第一、第三象限为减函数

②当a≤-1且a为偶数时,函数在第二象限为增函数,第一象限为减函数

③当a=0且x不为0时,函数图象平行于x轴且y=1、但不过(0,1)

④当0<a<1时,函数是增函数

⑤当a≥1且a为奇数时,函数是奇函数

⑥当a≥1且a为偶数时,函数是偶函数

幂函数的图像不过第四象限

特别说明

为了研究方便,在初等函数里对于幂函数,只讨论a=1,2,3,1/2,-1时的情形。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/11/16 20:32:30