词条 | 芒德勃罗 |
释义 | 芒德勃罗(Benoit B.Mandelbrot, 1924- )教授长期在IBM沃森中心供职,在多种学科“流浪”了20余年才得到学界广泛承认的分形之父,近些年来不断 得到各种荣誉和奖励但也到处与同行发生争执。 人物简介波努瓦·芒德勃罗1924年11月20日生于波兰华沙,祖籍是立陶宛犹太人。据一位 语言学家讲,在立陶宛语中“Man”读作“芒”,所以这里不译作“曼”。波努瓦的父亲是成衣商,母 亲是牙科医生 。2010年10月16日于美国去世。 出于对地缘政治现实的警觉,1936年在他11周岁时举家迁往巴黎。这也部分是受 其叔父佐列 姆·芒德勃罗伊(Szolem Mandelbrojt,1899-1983)的吸引,当时佐列姆是法国的一位数 学家。佐列姆通过阅读庞加莱 (Jules-Henri Poincare,1854-1912)和阿达马(Jacques-Salomon Hadamard,1865-1963)的著作学会法语,他到法国是因为法国是经典分析的摇篮。 人物生平经历芒德勃罗的父亲很骄傲已经将佐列姆扶养大,佐列姆是父亲最小的弟弟,比他小16岁之多。 父亲是位很重学问的人,祖上几代人也都是学者。“事实上家庭里每个人都像一位学者或者 期望成为一位学者,至少部分时间是这样。”[4]不幸的是,许多学者都忍饥挨饿。 芒德勃罗的父亲是很实际的人,他发现最好能拥有一个固定职业。他的工作是做 衣服并卖衣服,他并不喜欢这个职业,然而他认为:一个学者的独立性和幸福最好建筑在一份具有不同来源的稳定收入基础之上,特别是这种收入对于世界性大灾难不能过分敏感。成衣商这种职 业当然是一 个好的选择,因为无论什么时候人们都得穿衣服! 中学时,波努瓦的数学与科学成绩在班上相当出色。高中毕业后,由于家庭生活 拮据,加上 他不喜欢大城市,于是在家里待了一段时间,没有接着读高等院校。芒德勃罗解释说,这段时间里他“拎着一些破旧而过时的书籍,以他自己的方式学习着,自我猜测着许多事情,做 任何事均不 采取理性或者半理性的方式,但这样却培养了自己极大的独立性和自信心”。 “1929年,当时我5岁,我叔叔佐列姆·芒德勃罗伊成为克莱蒙特-弗兰特 (Clermont-Ferr and)大学的教授。当我13岁时他升任阿达马的继承人位置,成为巴黎法兰西学院勒贝格(Hen ri Leon Lebesgue,1875-1941)的同事。因此,我总是能够分享父辈们生活中以及创建新数学过程中遇到的许多事情。阿达马、勒贝格、蒙泰尔(Paul Montel,1876-1975)及当儒瓦(Arnaud Denjoy,1884-1974)都是关系不太远的叔伯。当我还是一个小孩子时,就曾学着拼写高斯的名字,为我叔叔写的一本书寻找印刷错误。” 第二次世界大战爆发了,在纳粹到来之前,全家不得不扔掉一切,只拎了几只箱 子,加入难 民潮,一起从巴黎向南涌到逃难的马路上。最后到了土湟(Tulle)镇。芒德勃罗的经历与另一位浑沌探索者利比查伯(Albert Libchaber,法国实验物理学家,用小盒中的氦对流实验 验证了周期倍 化分岔)相仿。利比查伯是波兰犹太人的儿子,战争中也采取了与芒德勃罗相似的办法得以幸存。 1944年,芒德勃罗以班级第一名的身份通过了法国著名的“两校”入学考试,被 高等师范学校录取。“我20岁时,尽管完全缺乏正式准备,在盛大的法国考试中却表现极佳。我叔叔想当然地认为我这个有天赋的侄儿准走他的道路,将来搞数学研究。”这两校指 “高等师范学校” (Ecole Normale Superieure)和“综合工科学校”(Ecole Polytec hnique),名字在今天听起来,远比不上我们熟知的一堆大学,但却是法国最好的大学,也 属于 世界上最有名气的大学。当时这两校每年招生人数极少,考试也出了名地艰难,考试持续一个月之久。芒德勃罗回忆说,当时他的代数与分析基础并不好,但几何直觉不错,考试 时他总是设 法将代数与分析问题化成几何问题,巧妙地将它们解决,他称此为合法性“作弊 ”(cheating)。芒氏虽然考得不错,但他对法国教育中的处处考试、处处打分的习惯表示不 满,他曾嘲 笑道:“如果法国想取得国际象棋世界冠军,最好的办法也许是在综合工科学校里讲授国际象棋”。 芒德勃罗与其叔叔佐列姆对数学有完全不同的口味。叔叔佐列姆是一位非常经典 的分析学家 ,而波努瓦·芒德勃罗更倾向于几何,他称自己为几何学家。叔叔佐列姆认为几何是已死掉的学科,只对小孩子学数学还有一些意义,人们只有超越它才能取得天才的学术贡献。但是 芒德勃罗不 相信这种观念,也不喜欢分析学派的那种“高雅”风格。 佐列姆的愿望终于落空了。他始终搞不明白小芒德勃罗究竟出了什么问题,于是 对他做什么 不再感兴趣了。不过,他们还是朋友。叔叔佐列姆对芒德勃罗的工作和生活有很大负面影响。 早在1914-1918年的时候,芒德勃罗的父亲希望聪明的弟弟佐列姆主修他向往的 领域——化学工程(约翰·冯·诺伊曼的父亲也希望儿子学习化工)。1939-1945年风波过后,父亲担心 弟弟的成功只 是侥幸,这次让儿子波努瓦·芒德勃罗将来作一名工程师。“因为我对所谓的 ‘几何学之死’不以为然,又因为我不喜欢以理科作替代,于是接受了父亲的建议,我特别 让自己离数 学越远越好。” 由于不喜欢布尔巴基学派(解释见后文)的数学,芒德勃罗在高等师范学校念了没 几天,就转 到了综合工科学校。1947年芒德勃罗从法国综合工科学校毕业。1948年获美国加州理工大学硕士学位;1952年获巴黎大学博士学位。随后几年他不断在几个学科中游荡,先后“闯入” 过物理学、 经济学、生理学、语言学和其他一些似乎毫不相关的学科。他喜欢用“intellec tual wanderer”(有知识的流浪汉)、“wandering around”(游荡)等字眼描写自己的学术 生涯和人生经 历。 人物学术著作芒德勃罗的博士学位论文显示了其从事交叉学科研究的才能。论文分两部分,第 一部分采用 数学理论研究词汇中字母的分布规律;第二部分研究热力学。将不同学科中的理论有机地组织一起,用于研究某一个特定问题,这代表着芒德勃罗科学研究工作的特色。 到美国后,他最先是作为麻省理工学院的一名研究助理(research associate),1958成为约 克郡高地沃森研究中心(T.J.Waston Research Center,IBM的一个研 究基地)物理部研究人员(staff member)。 芒德勃罗曾在日内瓦大学(1955-1957),法国里尔(Lille)大学及综合工科学校 (1957-1958) 任数学讲师。曾任耶鲁大学罗宾逊(Abraham Robinson)数学科学副教授,麻省理工学院经济 学讲师和访 问教授及应用数学访问教授,哈佛大学经济学、应用数学与数学访问教授,耶鲁大学工学访问教授,爱因斯坦医学院生理学访问教授,巴黎沙特(Paris-Sud)大学数学访问 教授。1987年 成为耶鲁大学数学教授。 芒德勃罗因创造了原来根本不存在的分形学科而一举成名。1975年以法文出版《 分形对象: 形、机遇与维数》(Les Objets Fractals:Forme,Hasard et Dimension),1977年以英文出版《分形:形、机遇与维数》 (Fractals:Form,Chance and Dimension),1982年出 版《大自然的分形几何学》。最后一部影响最大,它是分形学科的宣言书, 包罗万象,显示 了将分形用于自然现象描述的重要性。到目前为止他一共写过这三部书,后面每一部都 是对前一部的修订和增补,其中相当部分是重写的。他对自己的专著的描述用词是:“普及性的 ”、“随笔 ”(Essay)、“宣言书”、“从头到尾都是序言”。最后一句是仿达西·汤普森 (D‘Arcy Thompson,1860-1948),汤普森曾写过一部巨著《论生长与形式》,但汤氏称该书 从头到尾都是 序言。 据初步统计,到1989年底他已经发表了123篇论文,内容极其庞杂,涉及语言学 、概率论、 通讯工程、水利学、经济理论、金融分析、布朗运动、湍流、复迭代、宇宙学、临界现象与相变等等。 芒德勃罗不是传统意义上的数学家、科学家,他的经历和学术生涯史无前例。 1973年以前, 他一直不被各领域的科学家所认同,“分形理论”诞生后他的“政治”地位(他自己愿意用这样的词汇)剧变,成为世界上最有名气的科学家之一。通过因特网(Internet),可以很好 地检验一个人 的知名度:用万维网(WWW)浏览器打开Yahoo!检索引擎,输入“Mandelbrot” 或者“fractal”,几秒种内便可查到上万条信息。仅从这一点来看,当今世界还没有哪位 科学家如此赫 赫有名,即使将他与影视名星放在一起,其知名度也不逊色。 科学界曾两次为他举行国际范围的祝寿活动,并相应出版了祝寿科学论文集。一 次是1989年 在其65岁生日时,纪念文集以《物理学D》(Physica D,专门刊登非线性科学方面的论 文)杂志专号出版(1989年第38卷),刊登了他的大幅照片及详细学术经 历。另一次是1994年 他70大寿(会议拖到1995年举行),纪念文集由新加坡的《分形》(Fractals,1991年 创办的一份关于“大自然复杂几何的跨学科”学术杂志)杂志专号出版(1995年第3卷第3期)。 对一位科学工 作者而言,这是很不容易享受到的荣誉。 芒德勃罗现为美国艺术与科学院院士,美国国家科学院外籍院士,欧洲艺术、科 学与人文学 院院士。他曾荣获巴纳奖章(F.Barnard Medal,1985)、富兰克林奖章(Franklin Medal,1986 )和物理学沃尔夫奖(Wolf Prize,1991),还有其他若 干奖励。 芒德勃罗开创的分形理论近年来十分红火,据阿哈罗尼(Amnon Aharony)和费德 (Jens Feder)1989年对INSPEC数据库统计,公开发表的分形论文累计数量符合指数规律exp{(t-1974)/1.74}, 其中t代表年份,这表明每年论文数量以1.8的因子增加。 博学成就了事业进入20世纪,各门科学早已扬弃了博物学的传统,林耐(Carl von Linne,1707-1778) 、莱伊尔(Charles Lyell,1797-1875)和达尔文(Charles Robert Darwin,1809-1882)的时代 一去不复返 了,现在很难找到某人因采用博物学方法而取得重大成功,但芒德勃罗是个极大的例外,他是现代科学界最大的博物学家(naturalist)。他十分推崇《论生长与形式》( On Growth and Form)的作者达西·汤普森,这也间接表明他的博物学倾向。 他的思维方式很特别,喜欢几何是一个特征,此外他更关心数学史和物理学史( 杨振宁、李 政道等大科学家也都十分重视科学史)。多数研究人员总是找最新的学术期刊来阅读,以便能跟上科学技术日新月异的形势。而他专门找一些破旧的、没人翻看的期刊,并且时常注意 一些不起眼 的非核心刊物。这是一个成才策略问题。 芒氏特别重视那些当时非主流的思想,尤其是那些被称作“病态的”、“反直觉 的”的东西 。“医生和律师用各种‘病例集’和‘案例集’来称呼有一个共同题目的实际病例和案例的汇编。而科学上尚无相应的专门名词,因此我建议也应用‘范例集’这个名词。重要的范例 需倍加注意 ,而稍次的也应给予评述:通常可利用先例而缩短讨论。”[2]因此诸 如现在人们熟悉的康托尔 (Georg Ferdinand Philip Cantor,1845-1918)三分集、外尔斯特 拉斯(Karl Theodor Wilhelm Weierstrass,1815-1897)不可微曲线、可充满正方形区域的皮 亚诺(Giuseppe Peano,1859-1932)曲线、 谢尔宾斯基(Waclaw Sierpinski,1882-1969)地毯 与海绵、柯赫(H.von Koch,1870-1924)雪花曲线等等,都被他视为珍宝。而 这些一直被正统 科学视为少数的反例,只是在教学过程中作为一种逻辑可能性偶尔提到。在分形如此流 行的今天,本文没有必要一个一个地仔细讲述这些“怪物”(芒氏视其为“宝贝”)的具体性质, 从任何一本 关于分形的书中都可以容易找到一些例子。 芒氏把世人的想法正好颠倒过来,他认为别人视为怪物的东西恰恰是最普通的类 型;别人视 为想当然的无比美好的点、线、面、体却是例外。长期的观察、收集与总结,使芒德勃罗获得这样一个印象:除了光滑的欧氏几何(广义的,泛指分形几何以外的标准几何)以外,应该 还有一种不 光滑的几何,这种几何更适于描写大自然的本来面目。 在其代表著《大自然的分形几何学》中,芒德勃罗如是说:“为什么几何学常常 被说成是‘ 冷酷无情’和‘枯燥乏味’的?原因之一在于它无力描写云彩、山岭、海岸线或树木的形状。云彩不是球体,山岭不是锥体,海岸线不是圆周,树皮并不光滑,闪电更不是沿着直线传 播的。更为 一般地,我要指出,自然界的许多图样是如此地不规则和支离破碎,以致与欧几里得(几何)──本书中用这个术语来称呼所有标准的几何学——相比,自然界不只具有较高 程度的复杂 性,而且拥有完全不同层次上的复杂度。自然界图样的长度,在不同标度下的数目,在所有实际情况下都是无限的。这些图样的存在,激励着我们去探索那些被欧几里得搁 置在一边, 被认为是‘无形状可言的’形状,去研究“无定形”的形态学。然而数学家蔑视这种挑战,他们想出种种与我们看得见或感觉到的任何东西都无关的理论,却回避从大自然 提出的问题 。” 芒氏认为,分形几何学并非20世纪数学的直接“应用”。它是数学危机的一个晚 产的新领域 ,这个危机从雷蒙德(duBois Reymond)1875首次报告外尔斯特拉斯构造的处处连续而不可微 函数就已开始了。这次危机大约延续到 1925年,主要的演员是康托尔、皮亚诺、勒贝格和 豪斯多夫(Flix Hausdorff,1868-1942)。这些天才们的工作的影响,远远超出了原定的范围 。他们及其几代后继者都不 知道,在他们那些十分返朴归真的创造后面,有着一个趣味盎然的世界。 海岸线:最容易说明的分形巴塞罗斯(Anthony Barcellos)采访芒德勃罗时问他:“分形实例中你最喜欢哪 一个?”芒氏脱口而出:“当然是海岸线例子”。随即他又补充说还有“血管分形结构”以 及“自平方龙”(复 迭代中的一个例子)等例子。他风趣地讲,实际上他不知道最喜欢哪一个,所有那些分形模型都好比他的孩子,他都喜欢,作为父亲因为所有孩子而骄傲,所有孩子 都为这个分 形之家添了光彩。“一个人可以因为不同的理由爱不同的孩子,但他不可能有真正绝对的偏爱。” 不管怎么说,海岸线例子还是最容易说清楚的分形实例,芒氏到处演讲,也总是 提起它,在 两部专著中也把海岸线问题放在前头讲述。 1967年芒氏在美国的《科学》杂志上发表长度为两页多一点的报告《英国海岸线 有多长?统 计自相似与分数维》,列出分维公式D=-logN/logr(N),说明海岸线是一种无标度对象,用不同刻度的“尺子”去测量此类现象,可以得到完全不同的长度 结果。实际 上可以说海岸线有任意长度、无穷长度(当然从物理上看,无标度区间总有一个下限,在原子层次就不能再谈“海岸线”问题了)。这时候“长度”就不是一个特别合适 的物理量了,它 显得有点不“客观”,而分维D则是一个很好的特征量。 实际上关于海岸线长度测量悖论,在芒氏之前英国著名气象学家里查逊(Lewis Fry Richard son,1881-1953)、波兰著名数学家斯坦因豪斯(H.Steinhaus,1887-1972)和法国著名实验物 理学 家、诺贝尔奖获得者佩兰(Jean-Baptiste Perrin,1870-1942)等都有过精彩论述。芒 氏当时似乎只注意到前两人,后来才发现后者有一长串精辟阐 述(在1977年、1982年的专著 中芒氏大段引述了佩兰的话)。在《科学》杂志上的这篇文章中,芒氏根据 里查逊的数据绘制了6条海岸线的“双对数图”,展示了存在6条直线(只有一条略弯曲),这些直线的斜率就 代表海岸线 的分维值。 这篇文章的第二张图示意了如何用几种“生成元”导出不可求长的 (nonrectifiable)的自相似曲线。后来芒氏用柯赫曲线来说明海岸线问题。80年代后,生成元与L系统理论和计算机 图形学结合起 来,引起不小的热潮。 从这个实例可以看出,分形几何非常直观、简单,比现在任何一种数学都简单几 百倍,似乎 没什么了不起。但第一个吃螃蟹的人不容易,第二、第三个吃者也不简单。对于分形几何学中相当多内容,即使芒氏也不是第一个吃螃蟹的人,但他使吃螃蟹成为了时尚。他做的许多 贡献都是这 种性质的,他最终将毫无头绪的“杂多”综合在一起,创立了分形科学。 对布尔巴基学派的态度芒德勃罗一生做了各种各样的研究,涉猎语言学、通讯工程、热力学、经济学、 湍流、布朗 运动、复迭代等等,在他的工作中数学与其他学科是自然结合在一起的。如果说他是什么什么家的话,他首先是“科学博物学家”,因为他善于从科学史中发现有价值的东西,将一些 孤立的、只 言片语的深刻洞见联系起来。他的几乎每一样贡献都很容易找到一系列前身,对此人们有两种不同的看法,一种观点认为芒德勃罗没什么了不起,只不过自己造了“分形” 这个词而已 ;另一种观点截然相反,认为他的创造是伟大的综合,是任何人所无法替代的, “分形”体现的并不只是一个普通名词,它统摄了科学界各学科呼唤已久的内在声音。无疑 本文作者持 后一种见解。 芒德勃罗以几何方式思考问题,这句话有两方面的含义,一种是他以数学上的几 何学方式思 考,另一种则带有若干贬义:以直观的、从形状出发的、不严格的方式思考。对于芒氏,应该说两方面的含义都有,他本人也不讳言。他常常津津乐道地讲自己以图形的方式思考问题 的好处,当 年考巴黎高等师范学校时以几何方式“做弊”就是一例。另外芒氏不止一次公开反对布尔巴基学派的数学风格。 布尔巴基(Nicolas Bourbaki)是一群主要来自法国高等师范学校的数学家的笔名 。关于这个名字的来历有多种说法,总之是人为编造出来的。这个学派作为一个集体在20世纪的数学界 可谓影响甚 大。此学派的先驱人物主要有三位:康托尔、希尔伯特(David Hilbert,1862-19 43)和诺特(Emmy Noether,1882-1935)。第一位为他们提供了集合论,第二位提供了公 理化 方法,第三位则提供了抽象代数。1934年冬天高等师范学校的一伙毕业生商定第二年7月在一家饭店召开布尔巴基成立大会。成立初期活跃人物主要有:维尔(Andre Weil,1906 -)、迪多内(Jean Alexandre Dieudonne,1906-),迪尔萨特(Jean Delsarte,1903-)、 卡当(Henri Cartan,1904-)、切瓦利(Claude Chevalley,1909-)等。可以看出他们年纪相差 不多。这些年青人经常聚会,在一起讨论纯粹数学。30年 代他们计划撰写一部纯数学专著, 从基本原理出发,按严格逻辑发展进行形式构造。1939年以“布尔巴 基”为名的第一部《数学原理》(Elements de Mathematique)出版,一直出版到1980年,产生了很大影响。有 关布尔巴基的详 情可以参阅胡作玄编著的《布尔巴基学派的兴衰:现代数学发展的一条主线》。[33] 公正地评价,此学派为数学的严格化、体系化、结构化发展作出了重要贡献,该 学派中有三 人施瓦兹(Laurent Schwartz,1915- ,是上文提到的概率论大师保罗·莱维的女婿)、谢利( Jean-Pierre Serre,1926- )和 格罗申迪克(Abxander Grothendieck,1928- )曾获菲尔兹奖 ,还有两人维尔和卡当荣获沃尔夫奖,这说明其数学成就是举世公 认的。 即使如此,布尔巴基也不是没有缺陷。从当前趋势看,这个学派已光荣地完成了 其历史使命 ,已走向衰落。这个学派过分强调逻辑而贬低几何直觉,一直受到一些人士的反对,年青的芒德勃罗受不了他们那一套,离他们远远的。1985年有人问芒勃罗:“你提到你不喜欢布尔 巴基对待数 学的那种反几何的方法。你认为布尔巴基的影响对于接受你的分形方法是否设置了重要障碍?”芒氏回答说:“1945年当我离开高师的时候的确是这样,另一次是1958年我 离开法国时。 在这之后就没有了。他们不能阻止我做我自己的事情。多少年来我的许多听众深受他的影响,但并不知道他们的存在。” 芒氏认为布尔巴基试图为数学大厦打下一个基础,但它像浪漫王子梦中的城堡一 样,从未完 工,他们的宏篇巨著也远未实现他们声称的目标,并没有成为数学的普适标准。所谓30年河东30年河西一点不假。在数学界摆锤开始从一个极端摆回到一个更合理的位置。芒氏说:“ 如果我再早 一点推出我们分形几何,布尔巴基也许会成为一个重大障碍。但是现在他们最多能在巴黎开一个研讨会。某种意义上,我或许能从批驳他们的傲慢中获得好处。” 当分形几何学流行起来时,形势也变得突然,芒德勃罗骄傲地指出:“布尔巴基 现任领导人 之一的道阿迪(Adrien Douady,1935- )用了最后的几年时间发展了我所开创的复迭代思想 ,欢迎他总是件好事情。”在80年代 初,道阿迪确实“帮”了芒德勃罗一个大忙:他就芒德 勃罗提出的M集合的连通性与自己从前的两个学生 合作,作了严格的数学分析,得到了一批深刻的数学结果,直接促进了复迭代深入发展。 但是这个问题还可以从另一个角度去看。布尔巴基学派起初都来源于朱丽亚 (Gaston Julia ,1893-1978,在战争中他的鼻子受伤,从照片上可以看到他鼻部带着一个特制的面具)在高 师办的 讨论班,无疑朱丽亚可算作布尔巴基的祖师爷,而复迭代基本上是由朱丽亚开创的。芒德勃罗只是在70年代末才重新碰到这个问题,大张旗鼓地研究起迭代来,并将它与分形联 系在一起。 因此也可以说芒德勃罗皈依了布尔巴基传统。客观的看法也许是,数学的各个分支是内在联系的,发展总有个先后,物极必返,一种方法、一个问题的流行均有一定的时代 规律性。芒 氏与道阿迪两个对立学派都来研究复迭代,说明几何方法与分析方法没有本质的不同(代数、几何与分析历来是数学的相互统一的三大块),在计算机的帮助下可以走到一起 来,这是本 世纪80年代以来出现的盛事。 在对道阿迪进行表扬的同时,芒德勃罗严厉批评了大数学家迪多内:“布尔巴基 的奠基人之 一迪多内,关于数学的意义发表了大量极端错误的言论……。比如他认为皮亚诺曲线是反直觉的,只有用逻辑才能理解它,用直觉是不可能理解其性质的。这完全错了。今天皮亚诺曲 线被视为完 全直观的,因为我的工作使得它如此。我有这样一种感觉,迪多内并没有敌意,只是有趣。” 对于布尔巴基的全面评价涉及数学的建设以及数学教育的开展,是个很严肃的话 题。最后引 马季芳为《今日数学:随笔十二篇》所写的译后记中的一段话:“美国自50年代末到70年代初,花了20年功夫大搞‘新数学运动’……不幸,改革的指导思想全部采用布尔巴基学派的 主张,过分 强调抽象理论的重要性,排斥一切实际应用,全部新教材中竟没有一道应用题。结果事与愿违,学生的数学成绩普遍降低。……美国数学界受此打击,痛定思痛……补救之 道,在于数 学家不应孤芳自赏,必须面向群众,用生动活泼的语言,讲述本学科的性质、发展,及其在自然科学和社会科学各方面的广泛应用,借以增进世人对数学的了解和兴趣。” |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。