请输入您要查询的百科知识:

 

词条 麦克劳林公式
释义

麦克劳林公式 是泰勒公式(在x。=0下)的一种特殊形式。

若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和:

f(x)=f(0)+f'(0)x+f''(0)/2!·x^2,+f'''(0)/3!·x^3+……+f(n)(0)/n!·x^n+Rn

其中Rn是公式的余项,可以是如下:

1.佩亚诺(Peano)余项:

Rn(x) = o(x^n)

2.尔希-罗什(Schlomilch-Roche)余项:

Rn(x) = f(n+1)(θx)(1-θ)^(n+1-p)x^(n+1)/(n!p)

[f(n+1)是f的n+1阶导数,θ∈(0,1)]

3.拉格朗日(Lagrange)余项:

Rn(x) = f(n+1)(θx)x^(n+1)/(n+1)!

[f(n+1)是f的n+1阶导数,θ∈(0,1)]

4.柯西(Cauchy)余项:

Rn(x) = f(n+1)(θx)(1-θ)^n x^(n+1)/n!

[f(n+1)是f的n+1阶导数,θ∈(0,1)]

5.积分余项:

Rn(x) = [f(n+1)(t)(x-t)^n在a到x上的积分]/n!

[f(n+1)是f的n+1阶导数]

麦克劳林

 麦克劳林,Maclaurin(1698-1746), 是18世纪英国最具有影响的数学家之一。

1719年Maclaurin在访问伦敦时见到了Newton,从此便成为了Newton的门生。他在1742年撰写的名著《流数论》是最早为Newton流数方法做出了系统逻辑阐述的著作。他以熟练的几何方法和穷竭法论证了流数学说,还把级数作为求积分的方法,并独立于Cauchy以几何形式给出了无穷级数收敛的积分判别法。他得到数学分析中著名的Maclaurin级数展开式,并用待定系数法给予证明。

他在代数学中的主要贡献是在《代数论》(1748,遗著)中,创立了用行列式的方法求解多个未知数联立线性方程组。但书中记叙法不太好,后来由另一位数学家Cramer又重新发现了这个法则,所以现在称为Cramer法则。

Maclaurin的其他论述涉及到天文学,地图测绘学以及保险统计等学科,都取得了很多创造性的成果。

Maclaurin终生不忘牛顿Newton对他的栽培,死后在他的墓碑上刻有“曾蒙Newton的推荐”以表达他对Newton的感激之情。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/12/23 17:09:04