请输入您要查询的百科知识:

 

词条 洛仑兹变换
释义

洛仑兹变换因其创立者荷兰物理学家和数学家亨德里克·洛仑兹而得名。洛仑兹变换最初用来调和19世纪建立起来的经典电动力学同牛顿力学之间的矛盾,后来成为狭义相对论中的基本方程组。

洛仑兹变换的提出

19世纪后期建立了麦克斯韦方程组,标志着经典电动力学取得了巨大成功。然而麦克斯韦方程组在经典力学的伽利略变换下并不是协变的。

由麦克斯韦方程组可以得到电磁波的波动方程,由波动方程解出真空中的光速是一个常数。按照经典力学的时空观,这个结论应当只在某个特定的惯性参照系中成立,这个参照系以前假定是以太。其它参照系中测量到的光速是以太中光速与观察者所在参照系相对以太参照系的速度的矢量叠加。然而1887年的迈克尔逊-莫雷实验测量不到地球相对于以太参照系的运动速度。1904年,洛仑兹提出了洛仑兹变换用于解释迈克尔逊-莫雷实验的结果。根据他的设想,观察者相对于以太以一定速度运动时,长度在运动方向上发生收缩,抵消了不同方向上由于光速差异,这样就解释了迈克尔逊-莫雷实验的零结果。

洛仑兹变换的数学形式

洛仑兹提出洛仑兹变换是基于以太存在的前提的,然而以太被证实是不存在的,相对于任何惯性参照系,光速都具有相同的数值这个现象一时难以解释。爱因斯坦据此提出了狭义相对论。在狭义相对论中,空间和时间并不相互独立,而是一个统一的四维时空整体,不同惯性参照系之间的变换关系式在数学表达式上是一致的,爱因斯坦的相对论理论为洛仑兹变换结果提供了依据:

洛伦兹公式

是洛伦兹为弥补经典理论中所暴露的缺陷而建立起来的。洛伦兹是一位理论物理学家,是经典电子论的创始人。

坐标系K1

(O1,X1,Y1,Z1)以速度V相对于坐标系K(O,X,Y,Z)作匀速直线运动;三对坐标分别平行,V沿X轴正方向,并设X轴与X1轴重合,且当T1=T=0时原点O1与O重合。设P为被“观察”的某一事件,在K系中观察者“看”来。它是在T时刻发生在(X,Y,Z)处的,而在K1系中的观察者看来,它是在T1时刻发生在(X1,Y1,Z1)处的。这样的两个坐标系间的变换,我们叫洛伦兹坐标变换。

在推导洛伦兹变换之前,作为一条公设,我们必须假设时间和空间都是均匀的,因此它们之间的变换关系必须是线性关系。如果方程式不是线性的,那么,对两个特定事件的空间间隔与时间间隔的测量结果就会与该间隔在坐标系中的位置与时间发生关系,从而破坏了时空的均匀性。

例如

设X1与X的平方有关,即X1=AX^2,于是两个K1系中的距离和它们在K系中的坐标之间的关系将由X1a-X1b=A(Xa^2-Xb^2)表示。现在我们设K系中有一单位长度的棒,其端点落在Xa=2m和Xb=1m处,则X1a-X1b=3Am。这同一根棒,其端点在Xa=5m和Xb=4m处,则我们得到X1a-X1b=9Am。这样,对同一根棒的测量结果将随棒在空间的位置的不同而不同。为了不使我们的时空坐标系原点的选择与其他点相比较有某种物理上的特殊性,变换式必须是线性的。

先写出伽利略变换

X=X1+VT1; X1=X-VT

增加系数k,X=k(X1+VT1); X1=k1(X-VT)

根据狭义相对论的相对性原理,K和K1是等价的,上面两个等式的形式就应该相同(除正负号外),所以两式中的比例常数k和k1应该相等,即有k=k1。

这样, X1=k(X-VT)

为了获得确定的变换法则,必须求出常数k,根据光速不变原理,假设光信号在O与O1重合时(T=T1=0)就由重合点沿OX轴前进,那么任一瞬时T(由坐标系K1量度则是T1),光信号到达点的坐标对两个坐标系来说,分别是 X=CT; X1=CT1

XX1=k^2 (X-VT)(X1+VT1)

C^2 TT1=k^2 TT1(C-V)(C+V)

由此得

1

k= ────

────

√1-V^2/C^2

于是

T-VX/C^2

T1= ────

────

√1-V^2/C^2

T1+VX/C^2

T= ────

────

√1-V^2/C^2

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/1/31 2:14:25