词条 | 刘发旺 |
释义 | 男,澳大利亚籍专家,澳大利亚昆士兰理工大学客座教授。2002年6月被 聘为厦门大学数学系教授。 1975年毕业于福州大学计算数学专业,并留校任教。1982年在福州大学获得计算数学硕士学位。1988年到爱尔兰三一学院(Trinity College)攻读博士学位,1991年获得计算数学博士学位。 一 个人简介刘发旺教授是澳大利亚昆士兰科技大学博士生导师,计算数学学科带头人。 刘发旺教授1975年毕业于福州大学计算数学专业,毕业后留校工作。1982年获得计算数学硕士学位。1988年被破格提升为福州大学当时最年轻的副教授。刘发旺教授于1988年得到爱尔兰都柏林大学Trinity College提供的奖学金,攻读博士学位。在国际著名的数值分析专家John Miller 教授的指导下,于1991年以优秀的成绩获得了博士学位。从1988年至今,先后在爱尔兰三一学院,爱尔兰都柏林大学学院,澳大利亚昆士兰大学,厦门大学,澳大利亚昆士兰科技大学,从事计算数学和应用数学的教学和科研工作(博士后,研究员,副教授,高级研究员,教授,博士生导师),已主持和承担多项由澳大利亚国家研究基金和中国国家自然科学基金资助的科研项目,受到国国内外同行专家的高度好评。2002年6月--2005年12月,回国工作,被聘为厦门大学数学科学学院(一级岗位)教授,同时被聘福州大学兼职教授,华南理工大学客座教授,并于2005年获得福建省科学进步奖。2006年返回到澳大利亚昆士兰科技大学工作。目前是澳大利亚昆士兰科技大学和厦门大学分数阶微分方程数值方法团队的学科带头人,并多次获得澳大利亚昆士兰科技大学数学类,工程类优秀论文奖。刘发旺教授已指导13名博士研究生和11名硕士研究生,并应邀担任国际微分方程杂志,国际分数阶动力系统,分数阶微分方程通讯等杂志的编委,国际微分方程杂志分数阶微分方程2010,20112012年专刊主编。他已发表学术论文180多篇(Sci/EI文章占80%,是已发表的绝大部分文章的通讯作者)。 二 科研成果1988: 奇异摄动数值解获得福建省科学技术优秀论文奖。 1988: 破格提升为福州大学40岁以下最年轻的副教授。 1988-1991: 获得都柏林三一学院博士奖学金。 1975-1988:Stiff 微分方程数值方法,福州大学研究基金。 1980-1988 :奇异摄动数值解,福州大学研究基金。 1988-1991:半导体设备方程数值方法 ,都柏林三一学院和欧洲共同体研究基金。1991-1991:最佳切割技巧,都柏林大学学院 和欧洲共同体研究基金。 1992-1996:数值模拟利用微波能量加热过程及其应用,昆士兰理工大学和澳大利亚国家研基金。 1995-1998:气体和固体化学反应数学模型并直接应用于炼铁,昆士兰理工大学和澳大利亚国家研究基金。 1997-1998:木材变化模型,昆士兰理工大学和澳大利亚国家研究基金。 1997-1998:数值模拟地下水传送过程,昆士兰理工大学和澳大利亚国家研究基金。 1998-2000:发展和证实吸附传送过程的新模型,昆士兰大学和澳大利亚国家研究基金。 2000-2002:数值模拟海水浸入地下水层,昆士兰理工大学和澳大利亚国家研究基金。 2003-2005:奇异摄动偏微分方程的数值方法及其应用,中国国家自然科学基金。 2004-2005: 分数阶偏微分方程模拟土壤和植物系统中水和溶质的运动,中澳合作特别基金。 三 人才培养: 指导在校研究生:2002 级硕士生:沈淑君,郑婷婷,赵辉 2003级硕士生:王学彬( 高校在职教师攻读硕士学位) 郑达艺(福州大学),陈春华(福州大学) 2003级博士生:蔡新 (集大),杨晨航(提前攻博) 2004级博士生:刘青霞(厦大),章红梅(福大),陈景华(集大), 林然(硕博连读) 2004级硕士生:于强,尹翠影,张晓娟 四 发表的文章[1] F. Liu , I. Turner and V. Anh, An Unstructured Mesh Finite Volume Method for Modelling Saltwater Intrusion into Coastal Aquifers, Korean J. Comput. & Appl. Math.,2002, 391-407. (EI 收录 ) [2] F. Liu , V. Anh and I. Turner, Numerical solution of the fractional-order Advection-Dispersion Equation, The Proceeding of An International Conference on Boundary and Interior Layers -Computational and Asymptotic Methods, Perth, Australia, 2002, 159-164. [3] X. Cai and F. Liu, A class of conservative difference schemes for conservative equation with a small parameter, The Proceeding of an International Conference on Boundary and Interior Layers -Computational and Asymptotic Methods, Perth, Australia, 2002, 67-72. [4] N. Su, F. Liu and V. Anh, Simulating seawater intrusion in aquifers using modified Fokker-Planck equation and Boussininesq equation subject to phase-modulated tidal waves, Advances in Statistic, Combinatories & Related Areas 2002, 320-331. [5] L. Ding, S. Bhatia and F. Liu , Kinetics of adsorption on activated carbor: application of heterogeneous vacancy solution theory, Chem. Eng. Sci., 57, 2002, 3909-3928. ( SIC , EI 收录) [6] F. Liu , I. Turner, V. Anh and N. Su, A two-dimensional finite volume unstructured mesh method for transient simulation of time-, scale-dependent transport in heterogeneous porous media, J. Appl. Math. Computing, 2003, 215-241. ( EI 收录) [7] C. Please, F. Liu and D. McElwain, Condensed phase combustion traveling waves with sequential exothermic or endothermic reactions, Combustion Theory and Modelling, 7, 2003, 129-143. ( SIC , EI 收录 ) [8] F. Liu , V. Anh, I. Turner and P. Zhuang, Time fractional advection dispersion equation, J. Appl. Math. Computing, Vol. 13, 2003, 233-245. ( EI 收录) [9] N. Su, F. Liu and V. Anh, Tides as phase-modulated waves in inducing periodic groundwater flow in coastal overlaying a sloping impervious base, Environmental Modelling & Software, 18, 2003, 937-942. ( SIC 收录) [10] F. Liu , V. Anh and I. Turner, A two-Dimensional finite volume method for variable density flow and solute transport through saturated-unsaturated media, The proceeding of the International Symposium on Nonlinear Science and Application, Shanghai, ID0450 , 2003. [11] F. Liu , V. Anh and I. Turner, Numerical solution of the space fractional Fokker-Planck Equation, J. Comp. and Appl. Math., 166 , 2004, 209-219. ( SIC , EI 收录) [12] X. Cai and F. Liu , Uniform convergence difference schemes for singularly perturbed mixed boundary problems, J. Comp. and Appl. Math., 166 , 2004, 31-54. ( SIC , EI 收录) [13] R. Lin and F. Liu , A high order approximation of fractional order ordinary differential equation initial value problem, Journal of Xiamen University (NATURAL Science), Vol.43, No.1, 2004, 25-30. [14] S. Shen and F. Liu , A computational effective method for fractional order Bagley-Torvik equation, Journal of Xiamen University (NATURAL Science), Vol.45, No.3, 2004, 306-311. [15] F. Liu , V. Anh, I. Turner and P. Zhuang, Numerical simulation for solute transport in fractal porous media, ANZIAM J., 45(E) 461-473, 2004. ( SIC , EI 收录) [16] X. Lu and F. Liu , The explicit and implicit finite difference approximations for a space fractional advection diffusion equation, Computational Mechanics (CD-ROM), ID-120, 2004. [17] X. Cai and F. Liu , Improvement of the fitted mesh methods by multi-transition points technique for singularly perturbed convection diffusion problem, Computational Mechanics (CD-ROM), ID-612, 2004. [18] S. Shen and F. Liu , A fully discrete difference approximation for the time fractional diffusion equation, Computational Mechanics (CD-ROM), ID-79, 2004. [19] R. Lin and F. Liu , Analysis of fractional-order numerical method for the fractional relaxation equation, Computational Mechanics (CD-ROM), ID-362, 2004. [20] T. Zheng, P. Zhuang, X. Cai and F. Liu , A Petrov-Galerkin method for singularly perturbed time-dependent convection-diffusion equations with non-smooth data, Computational Mechanics (CD-ROM), ID-614, 2004. [21] H. Zhao and F. Liu , A class of Petrov-Galerkin schemes for singularly perturbed parabolic problems with a discontinuous convection coefficient, Computational Mechanics (CD-ROM), ID-615, 2004. [22] F. Huang and F. Liu , The time fractional diffusion equation and advection-dispersion equation, ANZIAM J.,46, 2005, 1-14. ( SIC , EI 收录) [23] N. Su, G. Sander, F. Liu and V. Anh, Similarity solution of Fokker-Planck equation with time- and scale-dependent dispersivity for solute transport in fractal porous media, Applied Mathematical Modelling, 2005, to appear. ( SIC , EI 收录) [24]H. Huang and F. Liu , The space-time fractional diffusion equation with Caputo derivatives, J. Appl. Math. Computing, 2005, to appear. ( EI 收录) [25]H. Huang and F. Liu , The fundamental solution of the space-time fractional advection equation, J. Appl. Math. Computing, 2005, to appear. ( EI 收录) [26]Y. Hu and F. Liu , Numerical Methods for a Fractional-Order Control System, Journal of Xiamen University (NATURAL Science), 2005, to appear. [27]X. Lu and F. Liu , Time Fractional Diffusion-Reaction Equation, Numerical Mathematics: A Journal of Chinese Universities, 2005, to appear. [28] F. Liu , V. Anh, I. Turner, K. Bajracharya, W. Huxley and N. Su, A finite volume simulation model for saturated-unsaturated flow and application to Gooburrum, Bundaberg, Queensland, Australia, Applied Mathematical Modelling, (2005), to appear. ( SIC , EI 收录) |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。