请输入您要查询的百科知识:

 

词条 裂项法
释义

裂项法求和

这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:

(1)1/[n(n+1)]=1/n-1/(n+1)

(2)1/[(2n-1)(2n+1)]=1/2[1/(2n-1)-1/(2n+1)]

(3)1/[n(n+1)(n+2)]=1/2{1/[n(n+1)]-1/[(n+1)(n+2)]}

(4)1/(√a+√b)=[1/(a-b)](√a-√b)

(5) n·n!=(n+1)!-n!

(6)1/[n(n+k)]=1/k[1/n-1/(n+k)]

示例

[例1]【分数裂项基本型】求数列an=1/n(n+1) 的前n项和.

解:an=1/n(n+1)=1/n-1/(n+1) (裂项)

则 Sn=1-1/2+1/2-1/3+1/3-1/4…+1/n-1/(n+1)(裂项求和)

= 1-1/(n+1)

= n/(n+1)

[例2]【整数裂项基本型】求数列an=n(n+1) 的前n项和.

解:an=n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/3(裂项)

则 Sn=[1×2×3-0×1×2+2×3×4-1×2×3+……+n(n+1)(n+2)-(n-1)n(n+1)]/3(裂项求和)

= [n(n+1)(n+2)]/3

小结

此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。

注意: 余下的项具有如下的特点

1余下的项前后的位置前后是对称的。

2余下的项前后的正负性是相反的。

易错点:注意检查裂项后式子和原式是否相等,典型错误如:1/(3×5)=1/3-1/5(等式右边应当除以2)

附:数列求和的常用方法:

公式法、裂项相消法、错位相减法、倒序相加法等。(关键是找数列的通项结构)

1、分组法求数列的和:如an=2n+3n

2、错位相减法求和:如an=n·2^n

3、裂项法求和:如an=1/n(n+1)

4、倒序相加法求和:如an= n

5、求数列的最大、最小项的方法:

① an+1-an=…… 如an= -2n2+29n-3

② (an>0) 如an=

③ an=f(n) 研究函数f(n)的增减性 如an= an^2+bn+c(a≠0)

6、在等差数列 中,有关Sn 的最值问题——常用邻项变号法求解:

(1)当 a1>0,d<0时,满足{an}的项数m使得Sm取最大值.

(2)当 a1<0,d>0时,满足{an}的项数m使得Sm取最小值.

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/2/12 21:16:32