词条 | 离子发动机 |
释义 | 离子发动机是太阳能电火箭发动机三种类型中的一种,故而又将其称为太阳能电火箭。太阳能电火箭是正在发展中的新技术,属于非常规推进系统。它与普遍使用的液体火箭、固体火箭等化学火箭有所不同,是靠太阳能工作,而非化学能。化学火箭发动机的推进剂把化学能转变为热能,经过喷管的气动热力加速,再转化为喷射燃气流的动能来产生推力。而太阳能电火箭发动机的工作介质则是通过太阳能转换成的电能予以加热的方式或这种电能产生的静电场、电磁场的作用获得动能来实现反作用推进的。 简介除了传统的化学火箭发动机外,就属离子发动机在宇航中的应用最广。 离子发动机的能量来自电力,可以来自太阳能电池板,或者核电池,通过从发动机尾部喷射出阳离子来推动飞船前进,所以离子发动机的驱动方式也被叫做电力驱动方式。 原理经过光电转换装置将太阳能变为电能,再通过结构设计使电能产生电磁场;工作介质在高温下被电离,电子从原子或分子中跑出,丢掉电子的原子或分子带正电,逸出的电子带负电,它们在总体上是呈中性的,这就形成了等离子体;呈中性的等离子体具有导电性,与磁场能相互作用,由电磁感应可以获得产生加速度的力。概括起来说,就是利用太阳能引发的电磁场对载流等离子体产生洛伦兹力的原理,使处于中性的等离子状态的工作介质加速以产生推力。 这种太阳能电火箭比通常使用的化学火箭效率要高10倍,所需推进剂即工作介质较少,可使航天器有更多的空间装载有效载荷。由于它利用的是取之不竭的太阳能,故而能在太空无重力状态下连续运转几年时间。缺点是推力和加速度都很小,要使航天器达到预定的飞行速度,用时很长。如智慧1号的太阳能等离子体发动机提供的加速度只有0.2毫米/秒2。它的重要意义在于,假若这次飞行试验成功,今后就会在更远距离航行的航天器上采用这种推进系统。 缺点目前的离子发动机的最大缺点是推重比太小,其推力只相当于一张纸对于你的手的压力,显然这样的发动机无法让飞船和探测器脱离地球的重力场,也无法携带大的负载。但这个缺点却被这种发动机在太空中的表现弥补了,由于它优越的比冲量,它最终能把传统的化学火箭远远抛在身后。换句话说,就是尽管传统的火箭发动机有更高的推重比,但是却以很低的比冲量把燃料在很短的时间内消耗光;而现在的离子发动机能持续运转几月甚至数年,这样,尽管推力小,但能通过长时间的积累达到更高的总冲量(impulse,等于力的平均值与它的作用时间相乘的结果),并最终达到更高的速度。 应用实例深空1号探测器提到离子发动机,就不能不提美国的深空1号探测器。虽然离子发动机过去在卫星上经常使用,但都是作为辅助发动机,用于姿态调整或者轨道维持;而深空1号第一次将离子发动机作为主发动机使用。深空1号的离子发动机也是迄今为止将电能向推力转化效率最高的,在太空中运行寿命最长的,也是比冲量最高的,比冲量超过3,000秒。 这种离子发动机追根溯源可以推到上个世纪的60年代,但到现在仍可以满足美国宇航局的两个目标,也就是大大减少旅程时间和初重,以低成本更快地完成行星际任务。而1998年10月24日发射的深空1号探测器的任务除了测试12项先进科技(其中包括作为主发动机的离子发动机),就是为了完成探测小行星Braille和遥远的彗星Borrelly这样的行星际任务。在圆满完成任务后,深空1号于2001年12月18日报废。 离子发动机工作的核心就是对喷出的气体进行离子化,这一般是以电子轰击的方式来实现。通过加热和电场加速的方式将电子从阴极向阳极发射并进入放电室,气体推进剂氙同样被注入放电室,并在放电室施加磁场,增加氙原子和电子碰撞的可能性。碰撞后,氙原子核周围的部分电子将被击开,使得氙原子被电离,带上正电。这种离子非常活跃并且移动得非常快。 位于放电室后边的高压栅极将最后产生推力,方式是制造静电场,对离子生成拉力让它们向栅极方向加速,当它们通过后,速度将达到每秒31.5公里,并被集中成一个离子束最终从飞船尾部喷出去,深空1号尾部喷射出的蓝色离子火焰。 需要注意的是,在最后阶段一个中和器收集多余的电子并把它们注入喷出的离子束,这样可以避免飞船被带上大量的负电荷。 深空1号探测器是美国宇航局新千年项目的第一艘飞船,它的离子发动机产生0.09牛顿的推力,比冲量是3,300秒,每天消耗100克氙推进剂,在发动机全速运转的情况下,每过一天时速就增加25~32公里。深空1号由德耳塔火箭送上太空,然后由离子发动机推动。最初发动机只开动了4小时就突然停机,但后来恢复了运转并从此一直顺利运行,其最终的工作时间超过14,000小时,超过了此前所有传统火箭发动机工作时间的总和。而最初发射深空1号时,只计划运转200个小时以证明这种离子发动机是可行的。美国宇航局在地球上实验室中,和深空1号发动机一样的离子发动机甚至持续工作了更长的时间。 深空1号离子发动机的工作方式只是许多方式中的一种而已,这种方式被称为Ion Engine,作为离子发动机的代表,但使用电来产生离子浆并进一步推动飞船的具体方式还有好多: 霍尔推进器(Hall Thruster)利用轴向电场(axial electric field)来加速离子。一个辐射磁场和轴向电场相互作用来产生方位角霍尔电流(azimuthal Hall current),这个电流部分限制电子,让放电室中电离化效率比较高。这是个在苏联发展成熟的技术,一般用于卫星姿态稳定。脉冲离子浆推进器(Pulsed plasma thrusters,PPT) 这种方式利用电流弧光,在固体推进剂(几乎总是用特氟隆)中产生快速而可靠的脉冲燃烧。PPT用于姿态控制效果很好,不过它是利用电来推进的系统中效率最低者之一,推进效率不到10%。磁致离子浆动力推进器(Magnetoplasmadynamic thruster,MPD) 也被称为洛伦兹力加速器(Lorentz-force Accelerator,LFA),它使用洛伦兹力(磁场和电场共同对带电粒子施加的力)来推动离子。MPD技术已经在实验室中被开发出来,但对它的商业兴趣很低,尽管在理论上它能产生极高的比冲量,因为它和Ion、Hall以及PPT方式不同,不使用电级,使用电级对离子进行加速的方式会使喷出的加速流被位于出口的电子源中性化,从而减低效率。MPD可以稳定运行,也可以脉冲运行。可变比冲磁致离子浆火箭(Variable-specific-impulse magnetoplasma rocket,VASIMR: 《北京青年报》2000年的一篇文章《打造星际飞船新引擎》把这个方式大大吹嘘了一番,认为是未来的方向。其实这种系统只是介于高推力低比冲的传统发动机和低推力高比冲的离子发动机之间的类型,可以在这两者之间调整参数。它也不用电极,而是在发动机前室使用电波来对氢推进剂进行离子化,然后在中室用磁场让其按自然频率绕磁场旋转,并使用无线电按照同一频率轰击,让温度上升到1千万K,再从后室把旋转变成轴向运动并释放出去。 最后,在离子化方面,日本设想用微波的方式来进行,用微波来击活推进剂气体的电子,之后就是和深空1号一样把离子聚集成束并以静电场加速喷射出去。美国宇航局也采用了日本人的办法测试了新的微波离子发动机,并得出结论认为这种方式可以让发动机工作得更久。 上述各离子发动机的共同特点都是使用电能,利用电来直接电离,或者用电来制造磁场、电波、微波等,然后用它们来对推进剂进行离子化。所以它们也被称为电动推进发动机。日本“隼鸟”号探测器(The Hayabusa Spacecraft) 多灾多难“不死鸟”是对它最好的说明,该探测器装备有化学发动机及离子发动机,两者曾经一度出故障导致仅靠惯性飞行,后离子发动机重点火成功,于2010年6月14日顺利回收,成为在人类历史上首次在月球以外的天体着陆并回归地球的飞行器。是离子发动机优势的力证。 评价离子发动机超长时间的持续工作固然是优点,可以逐渐积累到很高的速度,但这同样是缺点,因为这要求超长时间的持续电力供应。这要求携带一个电力供应装置,目前的方式是使用一个巨大的太阳能电池板,不仅加重重量,而且随着探测器远离太阳,其效率也不断下降。 可以说,目前限制离子发动机发展的瓶颈因素就是电力,由于目前的太阳能电力系统缺乏效率,离子发动机的设计也就只能在低电能的基础上进行。如果我们想往外围的深空继续进发,或者运送更大的载重,就必须解决这个问题,获得更大的电能,至少应该达到以兆瓦计算的规模,而目前的深空1号最多仅仅能产生2.5千瓦,其中能提供给离子发动机的是2.1千瓦。 对太阳能电力系统进行改进以增加太阳能的利用效率,目前唯一可预期的方式是使用纳米技术,但并不知道需要多久才能发展出有用的技术。所以对于近期来说,唯一的选择就是使用核电系统,目前的技术也能让船载核电系统产生数百千瓦的电能,而且在不远的将来能发展到兆瓦的级别。 在核电系统中,来自原子反应堆的热量可以通过热电转化方式或者热离子转化方式变成电能,这种办法在上世纪60年代就被看作是可以让人类开拓太阳系的技术,而这个方式也有可能提供一个低成本的系统用于太空商业化。 核电系统比太阳能电力系统产生更高的电力,从而可以让离子发动机获得更高的推力,更高的比冲量。虽然推力仍旧比不上传统的火箭发动机那么高,但比冲量方面的优势则很明显,传统的化学燃料火箭发动机的比冲量是大约400秒上下,深空1号通过太阳能电力系统获得的比冲量在3,300秒左右,而利用核电系统的离子发动机可以达到13,000秒。 由于电力充足,核电系统可以让发动机和仪器分享和调配电力。当仪器不需要电力的时候,可以把全部的电力都送给发动机,但需要读取、检测、发送信息时,可以关掉发动机,把电力都调给仪器。这就提供了节约大量重量的可能性。而最大的好处自然是核电系统即使远离太阳也不影响工作效率,从而能在深空工作。 新发展核能的热电转换率今年9月又有消息,对于核能的热电转换率又找到更好的办法可以进一步提高。美国加州大学在洛斯阿拉莫斯实验室(Los Alamos)工作的科学家利用一种称为传送波发动机(traveling-wave engine)的概念,可以将热量转换成电能的效率从过去的7%提高到18%。这意味着同样的核反应堆提供的电力能够增大一倍半。 目前的核发电机是使用热电转换方式(thermoelectric)而新办法使用热声转换方式(thermoacoustic),具体做法是将氦气送过一叠322个不锈钢金属丝网制成的碟子,它们被叫做交流换热器,交流换热器同热源连接。而吸热设备则让氦气膨胀和收缩,这样的膨胀和收缩能产生强大的声波,这就如同大气层中闪电会导致热膨胀从而产生雷声一样。震荡的声波在发电机中就驱动活塞,产生电流。如前所述,用这样的热—————电方式产生的电流比热——电方式效率更高。 核电系统在核电系统方面,我们需要取得的进展不仅是需要高效率,以获得兆瓦级别的电力,还需要制造出质量轻的电力系统。而最主要的缺点是需要对核辐射进行保护,以确保船上的成员和载货不受辐射以及来自反应堆的高热的影响,这将会增加船体重量。高温超导离子发动机用高温超导储能用核动力微波远程供电。 真正的应用不过就目前来说,还没有将离子发动机用于有人驾驶的飞船的计划,而是将继续用于探测器。近期配备离子发动机的探测器的任务包括到彗星采样,探测土星环,以及在木星的卫星欧罗巴上着陆。在这些远程飞行中离子发动机将比常规火箭发动机更快,例如,在2011年的Rosetta彗星任务中如果选择配备离子发动机的探测器,可以在大约5年左右的时间内取样并返回,而用传统的火箭发动机,单到达那颗彗星就需要花费9年时间。 新型离子发动机的研究据英国《新科学家》杂志报道,当前,美国国内在载人火星之旅和重返月球的优先选择上存在很多争论,而要求率先登陆火星的呼声看上去正占得上风。专家指出,从地球到达火星需半年之久,如此漫长的太空旅行势必会给宇航员身心健康造成极大的压力。不过,研究人员正测试动力强劲的新型离子发动机,有望使火星之旅缩短为39天。 早有成功案例 常规火箭燃烧化学燃料产生推力,但大部分燃料在从地面升空的第一阶段耗尽,所以,火箭常常只能在太空的大部分运行时间里采取滑行模式。另一方面,离子发动机可以令带电原子或离子加速通过电场,因而能反向驱动航天器。相比采用化学燃料的火箭,离子发动机在一定时间内提供的推力相对较少,这意味着它们自身可以不受地球引力的限制。 可一旦进入太空,它们就像帆船后面绵延不断的微风一样,可以提供持续多年的推力,令其逐渐加速飞行,直至速度超过化学燃料火箭。实际上,迄今已有多个太空探测任务采用离子发动机,如美宇航局的“黎明”号(Dawn)探测器和日本的“Hayabusa”探测器,前者正在赶赴两颗小行星灶神星和谷神星的途中,后者已于2005年与小行星Itokawa相撞。 新型发动机名为“可变比冲磁致离子浆火箭”(简称VASIMR),比以前几种离子发动机拥有更多的“增长剂”。这是因为它采用射频发生器加热带电粒子或等离子体。射频发生器类似用于播放无线电节目的发射机。VASIMR发动机正在由艾德·阿斯特拉火箭公司(Ad Astra Rocket Company)开发,该公司由物理学家、前美国宇航员张福林(Franklin Chang-Diaz)于2005年创建。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。