词条 | 离散型随机变量 |
释义 | 随机取值的变量就是随机变量,随机变量分为离散型随机变量与连续型随机变量两种(变量分为定性和定量两类,其中定性变量又分为分类变量和有序变量;定量变量分为离散型和连续型),随机变量的函数仍为随机变量。 有些随机变量,它全部可能取到的不相同的值是有限个或可列无限多个,这种随机变量称为"离散型随机变量". 离散型随机变量的概率分布 离散型随机变量在某一范围内的取值的概率等于它取这个范围内各个值的概率的和。 定义2.1:如果随机变量X只可能取有限个或至多可列个值,则称X为离散型随机变量。 定义2.2:设X为离散型随机变量,它的一切可能取值为X1,X2,……,Xn,……,记 P=P{X=xn},n=1,2……(2.1) 称(2.1)式为X的概率函数,又称为X的概率分布,简称分布。 离散型随机变量的概率分布有两条基本性质: (1)非负性 Pn≥0 n=1,2,… (2)归一性 ∑pn=1 对于集合{xn,n=1,2,……}中的任何一个子集A,事件“X在A中取值”即“X∈A”的概率为 P{X∈A}=∑Pn 特别的,如果一个试验所包含的事件只有两个,其概率分布为 P{X=x1}=p(0<p<1) P{X=x2}=1-p=q 这种分布称为两点分布。 如果x1=1,x2=0,有 P{X=1}=p P{X=0}=q 这时称X服从参数为p的0-1分布,它是离散型随机变量分布中最简单的一种。由于是数学家伯努利最先研究发现的,为了纪念他,我们也把服从这种分布的试验叫伯努利试验。习惯上,把伯努利的一种结果称为“成功”,另一种称为“失败”。 说明:1.随机变量ξ或η的特点:(1)可以用数表示;(2)试验之前可以判断其可能出现的所有值;(3)在试验之前不可能确定取何值。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。