请输入您要查询的百科知识:

 

词条 超声加工
释义

§ 历史

利用作超声频小振幅振动的工具,并通过它与工件之间游离于液体中的磨料对被加工表面的捶击作用,使工件材料表面逐步破碎的特种加工,英文简称为USM。超声加工可用于穿孔、切割、焊接(见超声波焊)、套料和抛光。

1927年美国物理学家R.W.伍德和A.L.卢米斯最早作了超声加工试验,利用强烈的超声振动对玻璃板进行雕刻和快速钻孔,但当时并未应用在工业上。1951年,美国的A.S.科恩制成第一台实用的超声加工机。50年代中期,日本、苏联将超声加工与电加工(如电火花加工和电解加工等)、切削加工(如磨削和车削等)结合起来,开辟了复合加工的领域。这种复合加工的方法能改善电加工或金属切削加工的条件,提高加工效率和质量。1964年,英国又提出使用烧结或电镀金刚石工具的超声旋转加工的方法,克服了一般超声加工深孔时加工速度低和精度差的缺点。1

超声技术在工业中的应用开始于20世纪10~20年代,它是以经典声学理论为基础,同时结合电子技术、计量技术、机械振动和材料学等学科领域的成就发展起来的一门综合技术。超声技术的应用可划分为功率超声和检测超声两大领域。其中,功率超声是利用超声振动形成的能量使物质的一些物理、化学和生物特性或状态发生改变,或者使这种状态改变加快的一门技术。功率超声在机械加工方面的应用,按其加工工艺特征大致分为2类,一类是带磨料的超声磨料加工(包括游离磨料和固结磨料),另一类是采用切削刀具与其他加工方法相结合形成的超声复合加工。

§ 发展

超声加工机床

1927年,美国物理学家伍德和卢米斯最早作了超声加工试验,利用超声振动对玻璃板进行雕刻和快速钻孔。但当时超声加工并未应用到工业上,直到大约1940年在文献上第一次出现超声加工(USM-Ultrasonic Machining)工艺技术描述以后,超声加工才吸引了大家的注意,并且逐渐融入到其他的工业领域。1951年,科恩研制了第一台实用的超声加工机,为超声加工技术的发展奠定了基础。

USM提供了比常规机械加工技术更多的优点。例如,导电和非导电材料它都可以加工,并且加工复杂的三维轮廓也可以像简单形状那样快速。此外,超声加工过程不会产生有害的热区域,同时也不会在工件表面带来化学/电气变化,而且加工时在工件表面上所产生的有压缩力的残余应力可以增加被加工零件的高周期性疲劳强度。

然而,在USM中必须供给磨料工作液,并且要保证加工过程中能有效清除刀具和工件间隙中的切屑和磨损磨粒。因此,材料的去除速率相当慢,甚至于在切削深度较大时会停止工作。而且,在磨粒及切屑混合液的流通过程中,对已加工表面或者孔壁会造成二次磨蚀,导致工件加工精度的降低,尤其是小孔加工。此外,磨料工作液还会磨蚀刀具本身,它将引起刀具端面及径向的大量磨损,从而很难保证加工精度。

为了克服这些问题,P. Legge提出采用固结金刚石刀具,结合工件的旋转进行孔加工的方法,形成了最初的旋转超声加工。这种加工方法克服了普通超声加工中游离超硬磨料液在刀具和工件之间流通不畅,以及磨料对加工刀具和加工孔壁的磨蚀等问题,同时使加工精度和材料的去除率得到了显著提高。后来研制了一种具有旋转超声振动系统的超声加工机床,固结式金刚石刀具以一定的静压力作用到工件材料上,并以一定振幅作轴向超声频振动,同时还作相对于工件的高速旋转运动,并且冷却液不断地被输送到刀具和工件表面之间,这种方法已被证实是一种高效低成本的硬脆性材料加工方法。

§ 现状

超声加工技术

超声加工技术的发展迅速,在超声振动系统、深小孔加工、拉丝模及型腔模具研磨抛光、超声复合加工领域均有较广泛的研究和应用,尤其是在难加工材料领域解决了许多关键性的工艺问题,取得了良好的效果。

1、 超声振动系统的研究进展及其应用

超声振动系统由换能器、变幅杆和工具头等部分组成,是超声设备的核心部分。在传统应用中,超声振动系统大都采用一维纵向振动方式,并按“全调谐”方式工作。但近年来,随着超声技术基础研究的进展和在不同领域实际应用的特殊需要,对振动系统的工作方式和设计计算、振动方式及其应用研究都取得了新的进展。

日本研究成功一种半波长弯曲振动系统,其切削刀具安装在半波长换能振动系统细端,该振动系统换能器的压电陶瓷片采用半圆形,上下各两片,组成上下两个半圆形压电换能器(压电振子),其特点是小型化,结构简单,刚性增强。

日本还研制成一种新型“纵-弯”型振动系统,并已在手持式超声复合振动研磨机上成功应用。该系统压电换能器也采用半圆形压电陶瓷片产生“纵-弯”型复合振动。

日本金泽工业学院的研究人员研制了加工硬脆材料的超声低频振动组合钻孔系统。将金刚石中心钻的超声振动与工件的低频振动相结合,制造了一台组合振动钻孔设备,该设备能检测钻孔力的变化以及钻孔精度和孔的表面质量,并用该组合设备在不同的振动条件下进行了一系列实验。实验结果表明,将金刚石中心钻的超声振动与工件的低频振动相结合是加工硬脆材料的一种有效方法。

东南大学研制了一种新型超声振动切削系统。该系统采用压电换能器,由超声波发生器、匹配电路、级联压电晶体、谐振刀杆、支承调节机构及刀具等部分组成。当发生器输出超声电压时,它将使级联晶体产生超声机械伸缩,直接驱动谐振刀杆实现超声振动。该装置的特点是:能量传递环节少,能量泄漏减小,机电转换效率高达90%左右,而且结构简单、体积小,便于操作。

沈阳航空工业学院建立了镗孔用超声扭转振动系统,采用磁致伸缩换能器,将超声波发生器在扭转变幅杆的切向作纵向振动时在扭振变幅杆的小端就输出沿圆周方向的扭转振动,镗刀与扭振变幅杆之间采用莫氏锥及螺纹连接,输出功率小于500W,频率为16~23 kH z,具有频率自动跟踪性能。

西北工业大学设计了一种可在内圆磨床上加工硬脆材料的超声振动磨削装置。该装置由超声振动系统、冷却循环系统、磨床连接系统和超声波发生器等组成,其超声换能器采用纵向复合式换能器结构,冷却循环系统中使用磨削液作为冷却液;磨床连接系统由辅助支承、制动机构和内圆磨床连接杆等组成。该磨削装置工具头旋转精度由内圆磨床主轴精度保证,结构比专用超声波磨床的主轴系统要简单得多,因此成本低廉,适合于在生产中应用。

另一种超声扭转振动系统已在“加工中心”用超声扭转振动装置上应用。主要用作电火花加工后的模具异形(如三角形、多边形)孔和槽底部尖角研磨抛光,以及非导电材料异形孔加工。该振动系统的换能器是采用按圆周方向极化的8块扇形压电陶瓷片构成,产生扭转振动。 超声加工焊接机

2 、超声加工技术应用研究

2.1 深小孔加工

众所周知,在相同的要求及加工条件下,加工孔比加工轴要复杂得多。一般来说,孔加工工具的长度总是大于孔的直径,在切削力的作用下易产生变形,从而影响加工质量和加工效率。特别是对难加工材料的深孔钻削来说,会出现很多问题。例如,切削液很难进入切削区,造成切削温度高;刀刃磨损快,产生积屑瘤,使排屑困难,切削力增大等。其结果是加工效率、精度降低,表面粗糙度值增加,工具寿命短。采用超声加工则可有效解决上述问题。

前苏联在20世纪60年代就生产出带磨料的超声波钻孔机床。在美国,利用工具旋转同时作轴向振动进行孔加工已取得了较好的效果。日本已经制成新型UMT-7三坐标数控超声旋转加工机,功率450 W,工作频率20 kHz,可在玻璃上加工孔径1.6 mm、深150 mm的深小孔,其圆度可达0.005 mm,圆柱度为0.02 mm。英国申请了电火花超声复合穿孔的专利,该装置主要用于加工在导电基上有非导电层的零件,如在金属基上涂有压电陶瓷层的零件。整个加工过程分两个阶段进行:首先用超声振动将非导电层去除掉,当传感器感知金属层出现时,即改用电加工或电火花与超声复合的方法进行加工。该装置有效地解决了具有导电层和非导电层零件孔的加工问题。

1996年,日本东京大学在超声加工机床上,利用电火花线切割加工工艺在线加工出微细工具,并成功地利用超声加工技术在石英玻璃上加工出直径为φ15μm的微孔。1998年又成功地加工出直径为φ5μm的微孔。

湘潭大学进行了内圆表面的超声光整强化研究。该方法是在钻孔后对孔进行精加工处理,通过机械——超声强化处理,在普通机床上达到精铰、研磨的精度,可实现机械化。初步实验结果表明,该方法加工效果显著,表面粗糙度值可大大降低,内圆表面形成有益的残余压应力,有较高的显微硬度,提高了工件的耐用度,同时内圆表面呈网状纹络,特别适合像轴瓦等表面贮油工件的精加工,并可大大降低生产成本。

哈尔滨工业大学研究了Ti合金深小孔的超声电火花复合加工。该工艺将超声振动引入到精密电火花加工中,通过研究超声振动对电火花精加工过程的影响,开发出了一种将超声和电火花结合在一起的新型4轴电火花加工装置。实验研究表明,应用该装置可以在Ti合金上加工出φ<0.2 mm、且深径比>15的深小孔。

兵器工业五二研究所研究了陶瓷深孔精密高效加工的新方法——超声振动磨削,进行了超声振动磨削和普通磨削陶瓷深孔的对比实验。结果表明,超声振动磨削可明显提高陶瓷加工效率,能有效地消除普通磨削产生的表面裂纹和凹坑,是陶瓷深孔精密高效加工的新方法。

2.2 拉丝模及型腔模具研磨抛光

聚晶金刚石拉丝模超声研磨抛光技术在国内外已获得广泛应用,新的超声研磨抛光方法和设备已出现。北京市电加工研究所提出的“超硬工具材料电火花超声波复合抛光方法”,其特点是:采用超声频信号调制高频电火花脉冲电源与超声加工复合进行聚晶金刚石拉丝模研磨抛光。该技术已获得国家专利,并在生产中获得应用。

台湾的H.Hocheng等人对模具钢的超声抛光进行了基础性研究,研制了一套高效的超声抛光系统,应用该系统对模具钢进行了抛光试验,研究结果表明此系统大大提高了模具钢的抛光质量。

日本研制的UMA-1型数控超声研磨机,其研磨时间在1~999 s范围内可任意设定;频率自动跟踪;研磨钢针夹持可靠,发热少,钢针磨耗能自动修整;钢针以固定速度进给,具有研磨时间短、精度高的优点。

浙江大学进行了超声波-电化学复合研磨硬质合金拉丝模的实验研究。

吉林大学对机器人超声-电火花复合加工模具曲面进行了研究,结果证明该方法可改善加工质量,模具曲面精加工效率提高4倍以上。

哈尔滨工业大学针对目前模具光整加工难以实现高精度、高效率加工的实际问题,将电解加工、机械研磨及超声加工相复合,提出了一种新型的光整加工方法——电化学超精密研磨技术,开发研制了一种数控展成超精密光整加工的新工艺及设备。通过对模具型腔高效镜面加工的实验,表明选配适当工艺参数进行光整加工,可以获得表面粗糙度Ra0.025μm的镜面,效率较普通研磨提高10倍以上,较电解研磨提高1倍以上。 超声测厚仪

2.3 难加工材料的超声加工

金属和非金属硬脆材料的使用越来越广泛,尤其是陶瓷材料,具有高硬度、耐磨损、耐高温、化学稳定性好、不易氧化、腐蚀等优点。然而,由于工程陶瓷等难加工材料具有极高的硬度和脆性,其成形加工十分困难,特别是成形孔的加工尤为困难,严重阻碍了应用推广。因此,国内外许多学者展开了对难加工材料加工方法的研究,其中以超声加工较多。

英国阿伯丁大学国王学院研究了超声钻削难加工材料时工艺参数对材料去除率的影响,建立了间断性冲击过程的非线性模型,对冲击力的特性进行了研究,提出了一种新的材料去除率的计算方法,这种方法首次解释了材料去除率在较高的静态力作用下减小的原因。

美国内布拉斯加大学和内华达大学对Al2O3陶瓷材料微去除量精密超声加工技术进行了研究。通过模拟陶瓷材料超声加工的力学特性对材料去除机制进行分析,研究发现,低冲击力会引起陶瓷材料结构的变化和晶粒的错位,而高冲击力会导致中心裂纹和凹痕。美国内布拉斯加大学还第一次分析了Al2O3陶瓷精密超声加工的机理、过程动力学以及发展趋势,并详细讨论了超声技术在陶瓷加工方面的应用情况。

巴西的研究人员对石英晶体的超声研磨技术进行了研究,发现石英晶体的材料去除率取决于晶体的晶向,研磨晶粒的尺寸影响材料去除率和表面粗糙度。研究指出,加工过程中材料产生微裂纹是材料去除的主要原因。

美国堪萨斯州立大学提出了一种超声旋转加工陶瓷材料去除率模型的计算方法,并将其应用到氧化锆陶瓷的加工中,确定了材料去除率和加工参数之间的关系,该研究大大推动了陶瓷材料旋转加工技术的发展。

山东大学研究开发了工程陶瓷小孔的超声振动脉冲放电加工技术,工具电极的超声振动引起脉冲放电,从而代替了传统电火花加工的专用脉冲发生器。另外,工具电极的超声振动还可以起到清洗缝隙的作用,并采用该技术对Al2O3/(W,Ti)C、Al 2O3/Ti B2、Al2O3/TiB2/SiCw3种Al2O3基陶瓷刀具材料表面定位方孔进行加工,研究了其加工机理和加工参数对不同陶瓷材料加工效率、加工表面粗糙度的影响规律。结果表明,该复合加工技术有效地结合了超声加工和放电加工的特点,能高效、高质量地加工陶瓷材料。

山东大学还利用超声加工技术对大理石的孔加工进行了研究,并与陶瓷材料进行了对比研究。结果表明,材料去除率与大理石的力学性能有关,在同样的加工条件下,材料的强度和断裂韧性越高,其去除率越低,加工精度越高。

天津理工学院对大理石超声精密雕刻技术进行了研究,开发了大理石超声精雕系统。该系统解决了大理石雕刻中微小异形表面高效精加工的难题,使大理石精雕质量和水平跨上了新台阶。

同济大学对超声加工建筑玻璃小孔的实验进行了研究,探讨了工具振动的振幅、频率、工件材料、进给压力、工作介质等主要加工参数对材料去除率的影响规律。结果表明,超声加工建筑玻璃小孔的精度、表面质量均可满足建筑安装、装潢的要求。该研究对其他玻璃材料的加工具有一定参考价值。

北京航空航天大学和哈尔滨工业大学将超声振动引入普通聚晶金刚石(PCD)的研磨加工,显著地提高了研磨效率,并在分析PCD材料的微观结构和去除机理的基础上,对PCD超声振动研磨机理进行了深入研究。研究指出,研磨轨迹的增长和超声振动脉冲力的作用是提高研磨效率的根本原因。

淮海工学院对烧结永磁体材料超声振动加工过程中的材料去除机理进行了理论研究。该研究指出,磨料颗粒的尺寸与加工效率有密切的关系,对实际生产具有一定的指导作用。

沈阳工业学院研究了采用电镀金刚石工具头对玛瑙进行钻孔的可行性以及加工参数与材料去除率的关系。研究表明,该方法不仅大大提高了材料的去除率,而且加工成本也有所降低。同时,借助于SEM分析了该方法加工玛瑙的材料去除机理。超声挤压加工

2.4 超声振动切削

超声振动切削作为新兴的特种加工技术,引起了国内外专家学者的广泛兴趣和极大关注。最早对振动切削进行比较系统的研究、可以称为振动切削理论与应用技术奠基人的是日本学者隈部淳一郎。他在20世纪50~60年代发表了许多振动切削方面的论文,系统地提出了振动切削理论,并成功地实现了振动车削、振动铣削、振动镗削、振动刨削、振动磨削等。随后美国也对振动切削进行研究,到20世纪70年代中叶,振动车削、振动钻孔、振动磨削、光整加工等均已达到实用阶段,超声加工在难加工材料和高精度零件的加工方面显示了很大的优越性,取得了一系列研究成果,并在生产中得到推广应用。

俄罗斯科学院和英国拉伯运大学对超声振动切削的非线性过程进行了深入研究,利用流变模型对超声振动切削实验结果进行了理论解释。通过对超声切削的动力学研究,得到了振动工具的非线性振幅特性曲线,并讨论了超声振动切削的优越性及其应用领域。

日本工业大学提出了采用稍低频率(3 000~5 000 Hz)的振动切削方法,并用于切削纤维型材料(如金属短纤维)。另外,美国、英国、德国和新加坡等国的大学以及日本企业界如日立、多贺和Towa公司等还进行了超声椭圆振动切削的研究。

中国对振动切削的研究起步稍晚。自广西大学、南京电影机械厂和南京刃具厂联合开发了我国第一台“CZQ—250A型超声波振动切削系统”之后,许多大专院校、科研院所和工厂都开展了对振动切削的研究,取得了很多重要成果。研究内容从振动切削实验到实际工艺应用,从振动切削实验系统设计到对振动切削机理,范围较广泛,内容较深入。

山东大学对工程陶瓷的超声振动钻削加工进行了深入的研究,探讨了超声振动钻削中各项工艺参数对加工效果的影响,并从理论上分析了超声振动钻削时的材料去除机理。

东南大学在研究超声振动切削的刀具振动规律时得出:刀具与切削的分离作用是振动切削最根本的特点,正是这一特点才使得刀尖每次能以极大的加速度冲击工件进行切割。

上海交通大学对超声椭圆振动切削技术进行了研究,阐述了超声波椭圆振动切削原理和刀具椭圆振动系统,分析了超声波椭圆振动切削运动特性,介绍了超声波椭圆振动切削的实际切削效果。

兵器工业五二研究所进行了超声振动车削与普通车削、磨削加工陶瓷材料的对比试验研究。研究结果表明,振动车削可明显地提高陶瓷加工表面的质量,有效地消除普通车削、磨削中形成的表面微裂纹,因此是陶瓷精密加工的一种新方法。

长春汽车工业高等专科学校采用超声振动切削方法对一汽变速箱厂生产的一直齿齿轮的滚齿加工进行了工艺实验,通过生产现场各种工艺参数实验及小批量试生产,收到了令人满意的效果,具有较好的发展前景。

北京装甲兵技术学院提出了一种超声微振车削的新工艺。其特点是功率小(50 W)、振幅小(2~5μm),同样可获得一般振动车削的效果。

2.5 超声复合加工

将超声加工与其他加工工艺组合起来的加工模式,称为超声复合加工。超声复合加工,强化了原加工过程,使加工的速度明显提高,加工质量也得到不同程度的改善,实现了低耗高效的目标。

罗马尼亚的学者对工具电极在振动力作用下的电火花加工进行了研究,建立了电极在外力振动情形下的数学模型,该外力来源于放电区的气化和空化作用所形成的放电间隙中压力波的变动,通过这种振动提高了材料的去除率及加工过程的稳定性。该研究直接预示超声-电火花复合加工必将改善EDM的加工性能。

日本的研究人员研究了压电高频响应驱动器对电火花加工速度的影响,指出高频振动对240μm微孔的加工可提高速度1.5~2.5倍。

法国的研究人员系统地研究了超声振动对电火花加工性能的影响。结果表明,超声振动提高了加工速度,粗加工提高10%,精加工提高400%,并使加工过程稳定,特别是精加工时尤为突出,可使稳定加工的面积增大。电极的超声振动能改善加工过程的主要原因是:① 电极表面的高频振动加速了工作液的循环,使间隙充分消电离;② 间隙间很大的压力变化导致更有效的放电,这样就能从弧坑中去除更多融化的金属,使热影响层减小,热残余应力降低,微裂纹减小。

北京市电加工研究所于1985年起就开始对聚晶金刚石等超硬材料的研磨、抛光进行研究。于1987年研究成功了超硬材料超声电火花复合抛光技术。这项发明技术是世界上首次提出并实现采用超声频调制电火花与超声波复合的研磨、抛光加工技术。与纯超声波研磨、抛光相比,效率提高5倍以上,并节约了大量的金刚石磨料。

山东大学机械工程学院对超声频间隙脉冲放电技术进行了研究,并对工程陶瓷进行了加工实验,分析了该技术放电特性和加工特性。结果表明,超声频间隙脉冲放电加工的加工效率高于普通电火花加工的效率,而其加工表面粗糙度和加工形状精度接近于普通电火花加工。

南京航空航天大学进行了工件激振式超声复合电火花微细孔加工的研究,它跟以往的超声电火花复合加工的不同之处在于,通过工件的微幅激振改善微细电火花加工工作液的循环,进而提高微细电火花加工的脉冲利用率和微细孔加工的深径比。研究结果表明,工件越薄,排屑越有利,加工速度提高的越快。研究者认为,这主要由于工件激励后加工间隙内工作液中压力波剧变的冲击和扰动作用,有助于改善电火花微细加工的排屑条件,提高放电脉冲的利用率,使加工速度及微细孔电火花加工的深径比得到提高。

南京航空航天大学对硬脆金属材料的超声电解复合加工工艺进行了实验研究。结果表明,该复合加工方法使加工速度、精度及表面质量较单一加工工艺有显著改善。

§ 加工原理

声波是人耳能感受到的一种纵波,其频率范围为16—16000Hz。当声波的频率低于16Hz时就叫做次声波,

高于16000Hz则称为超声波。具有如下特性:

1)超声波可在气体、液体和固体介质中传播,其传播速度与频率、波长、介质密度

等有关,可用公式表示

C=λf (5-1)

式中 C--超声波传播速度(m/S);

λ--波长(m);

f--频率(HZ)。

2)超声波在各种介质中传播,其运动轨迹都按余弦函数规律变化,其位移为

x=A*cos(ω*t + ψ) (5-2)

式中 x--质点运动的位移(m);

A--振幅(m);

ω--圆频率(rad/S);

t--时间(s);

ψ--振动的相位角(rad)。

3)超声波可传递很强的能量,其能量强度可用垂直于波的传播方向单位面积的能量来表示, 超声加工中的能量强度高达几百瓦/平方厘米,且90%作用于工件表面。

4)超声波会产生反射、干涉和共振现象。出现波的叠加作用,使弹性杆中某处质点始终不动,而某处质点的振幅

则大大增加,从而获得更大的超声加工能量。这是因为,超声波在同一弹性杆的一端向另一端传播时,在不同介质的介面上会产生一次或多次波的反射,结果在有限长弹性杆,将存在若干个周期相同、振幅相等、传播方向相同或相反的波。于是在弹性杆传播的波,会出现波叠加,致使某处振动始终加强,或某处振动始终减弱,产生波的干涉现象。

为了提高超声波加工生产效率,必须使弹性杆处于最大振幅的共振状态,其设计长度为半波的整数倍,杆的支点选在

振动过程中的不动点,即波节点上;而杆的工作端部应选在最大振幅的波腹处。

5)超声波在液体介质中传播时,可在界面上产生强烈的冲击和空化现象,强化了加工过程的进行。 因超声波通过悬浮磨粒的液体介质时,会使液体介质连续地产生压缩和稀疏区域,由于压力差而形成气体的空腔,并随着稀疏区的扩展而增大,内部压力下降,与此同时,受周围液体压力及磨粒传递的冲击力作用,又使气体空腔压缩而提高压力,于是,转人压缩区状态时,迫使其破裂产生冲击波。由于进行的时间极短,因此,会产生更大的冲击力作用于工件表面,从而加速磨粒的切蚀过程。

2、超声加工的基本原理

超声加工时,高频电源联接超声换能器,由此将电振荡转换为同一频率、垂直于工件表面的超声机械振动,其根幅仅0.005~0.01mm,再经变幅杆放大至0.05~0.lmm,以驱动工具端面作超声振动。此时,磨料悬浮液(磨料、水或煤油等赃工具的超声振动和一定压力下,高速不停地冲击悬浮液中的磨粒,并作用于加工区,使该处材料变形,直至击碎成微粒和粉末。同时,由于磨料悬浮液的不断搅动,促使磨料高速抛磨工件表面,又由于超声振动产生的空化现象,在工件表面形成液体空腔,促使混合液渗入工件材料的缝隙里,而空腔的瞬时闭合产生强烈的液压冲击,强化了机械抛磨工件材料的作用,并有利于加工区磨料悬浮液的均匀搅拌和加工产物的排除。随着磨料悬浮液不断地循环。磨粒的不断更新。加工产物的不断排除,实现了超声加工的目的。总之,超声加工是磨料悬浮液中的磨粒,在超声振动下的冲击、抛磨和空化现象综合切蚀作用的结果。其中,以磨粒不断冲击为主。由此可见,脆硬的材料,受冲击作用愈容易被破坏,故尤其适于超声加工。

由超声发生器产生的高频电振荡(频率一般为16~25千赫,焊接频率可更高)施加于超声换能器上(见图),将高频电振荡转换成超声频振动。超声振动通过变幅杆放大振幅(双振幅为20~80微米),并驱动以一定静压力压在工件表面上的工具产生相应频率的振动。工具端部通过磨料不断地捶击工件,使加工区的工件材料粉碎成很细的微粒,为循环的磨料悬浮液带走,工具便逐渐进入到工件中,加工出与工具相应的形状。

§ 特点和应用

超声加工的主要特点是:

①不受材料是否导电的限制。

②工具对工件的宏观作用力小、热影响小,因而可加工薄壁、窄缝和薄片工件。

③被加工材料的脆性越大越容易加工;材料越硬或强度、韧性越大则越难加工。

④由于工件材料的碎除主要靠磨料的作用,磨料的硬度应比被加工材料的硬度高,而工具的硬度可以低于工件材料。⑤可以与其他多种加工方法结合应用,如超声振动切削、超声电火花加工和超声电解加工等。

超声加工主要用于各种硬脆材料,如玻璃、石英、陶瓷、硅、锗、铁氧体、宝石和玉器等的打孔(包括圆孔、异形孔和弯曲孔等)、切割、开槽、套料、雕刻、成批小型零件去毛刺、模具表面抛光和砂轮修整等方面。超声打孔的孔径范围是0.1~90毫米,加工深度可达100毫米以上,孔的尺寸精度可达0.02~0.05毫米。表面粗糙度在采用 W40碳化硼磨料加工玻璃时可达Rα1.25~0.63微米,加工硬质合金时可达Rα0.63~0.32微米。

§ 优势

超声扫描仪

随着各种先进材料应用需求的不断扩大,激光加工、高压水切割、电火花加工、电子束加工和电化学加工等特种加工方法均得到了较快的发展,相比传统加工方法,其特色和优越性得到较好的展示。激光加工的特点是切缝小、速度快、能大量节省原材料和可以加工形状复杂的工件,但是加工表面热损伤很难控制;高压水切割的特点是切口质量高、结构完整性好以及速度快,特别适宜金属基复合材料的切割,但是加工系统复杂;电火花加工和电化学加工则要求加工工件具有导电性。旋转超声加工是集普通超声加工与磨粒磨削加工为一体的复合加工,是加工硬脆性材料的一种高效方法,相比其他特种加工方法,它具有其独特的优势:

(1)超声加工可以加工导电和非导电等各种硬脆性材料,如陶瓷、宝石、硅、金刚石和大理石等非金属材料;也适用于加工低塑性和硬度高于HRC40的金属材料,如淬火钢、硬质合金、钛合金等金属材料;

(2)由于工件材料主要依靠磨粒瞬时局部的冲击作用,故工件表面的宏观切削力很小,切削热就少,不会因产生变形及烧伤而改变工件表面的化学/电性质,故加工精度和加工表面质量都比较好。与其他材料去除过程相比,超声加工能达到更高的精度和表面光洁度,同时还能延长刀具寿命;

(3)旋转超声加工采用固结磨粒的刀具对加工工件进行高频、断续加工,是超声加工和切、磨削加工的复合加工方式,比单纯的超声加工和切磨削加工具有更突出的优势,可以有效地提高已加工表面的耐磨性和耐腐蚀性。同时,旋转超声加工的复合加工机理,更适宜于硬脆性材料的加工,其去除率可以达到普通切磨削的6~10倍,是普通超声加工材料去除率的10倍。

§ 超声加工机

由电源(即超声发生器)、振动系统(包括超声换能器和变幅杆)和机床本体 3部分组成。超声发生器将50赫的交流电转换为超声频电功率输出,功率由数瓦至数千瓦,最大可达10千瓦。通常使用的超声换能器有磁致伸缩的和电致伸缩的两类。磁致伸缩换能器又有金属的和铁氧体的两种,金属的通常用于千瓦以上的大功率超声加工机;铁氧体的通常用于千瓦以下的小功率超声加工机。电致伸缩换能器用压电陶瓷制成,主要用于小功率超声加工机。变幅杆起着放大振幅和聚能的作用,按截面积变化规律有锥形、指数曲线形、悬链线形、阶梯形等。机床本体一般有立式和卧式两种类型,超声振动系统则相应地垂直放置和水平放置。

§ 熔焊应用

一、熔接法

以超音波超高频率振动的焊头在适度压力下,使二块塑胶的接合面产生磨擦热而瞬间熔融接合,焊接强度可与本体媲美,采用合适的工件和合理的接口设计,可达到水密及气密,并免除采用辅助品所带来的不便,实现高效清洁的熔接。

二、 铆焊法

将超音波超高频率振动的焊头,压着塑胶品突出的梢头,使其瞬间发热融成为铆钉形状,使不同材质的材料机械铆合在一起。

三、 埋植

藉着焊头之传道及适当之压力,瞬间将金属零件(如螺母、螺杆等)挤入预留入塑胶孔内,固定在一定深度,完成后无论拉力、扭力均可媲美传统模具内成型之强度,可免除射出模受损及射出缓慢之缺点。

四、 成型

本方法与铆焊法类似,将凹状的焊头压着于塑胶品外圈,焊头发出超音波超高频振动后将塑胶溶融成形而包覆于金属物件使其固定,且外观光滑美观、此方法多使用在电子类、喇叭之固定成形,及化妆品类之镜片固定等。

五、 点焊A、 将二片塑胶分点熔接无需预先设计焊线,达到熔接目的。

B、 对比较大型工件,不易设计焊线的工件进行分点焊接,而达到熔接效果,可同时点焊多点。

六、 切割封口

运用超音波瞬间发振工作原理,对化纤织物进行切割,其优点切口光洁不开裂、不拉丝。

§ 应用潜能

超声提取机

现代航空航天制造业已不是传统意义上的机械制造业,它是集机械、电子、光学、信息科学、材料科学、生物科学、激光学和管理学等学科的最新成就为一体的一个新技术与新兴工业的综合体。航空航天制造工程的发展水平对飞机、火箭、导弹、激光武器和航天器的可靠性和使用寿命的提高,综合技术性能的改善,研制和生产成本的降低,甚至总体设计思想能否得到具体实现均起着决定性的作用。

航空航天技术的发展对材料性能的要求愈来愈高,如比强度和比刚度高、有一定的耐高温和抗低温性能、有良好的耐老化和抗腐蚀能力、有足够的断裂韧性和良好的抗疲劳性能。因此,高温合金、钛合金、高强度钢、先进复合材料和工程陶瓷等材料得到了越来越广泛的应用。如碳基复合材料具有密度低、比强度和比模量高、可设计性强、抗疲劳性能好、耐腐蚀性能好和结构尺寸稳定性好等优点,在航空领域获得了广泛的应用。截至2008年,波音B787飞机上复合材料的用量已突破性地达到了50%,其后空客公司制造的A350飞机上复合材料的用量也将达到52%。

再者,功能晶体材料由于其优异的物理、化学和光学性能在航空航天、国防军工、信息、微电子及光电子等尖端科技领域得到越来越广泛而特殊的应用。如何实现光学晶体材料零件的高效精密与超精密加工已成为当前各国关注的新焦点。

对于功能晶体材料零件,除要求满足机械尺寸精度外,还要保证零件的光学功能特性,传统的加工工艺流程(磨削后进行研磨和抛光)工序多、周期长、成本高,相应地产品废品率较大,特别是脆性光学零件的精密磨削加工,容易造成加工表面和亚表面损伤。大量理论和试验研究表明,由于超声振动的引入,材料在加工过程中的变形行为、加工机制和刀具受力状态等会发生完全不同于常规机械加工的变化,具有特殊的工艺效果,如切削力小、切削热少,因而不会或者较少引起加工表面的热损伤以及由此引起的电/化学及光学性质的变化,从而可显著提高零件加工质量,并且加工过程平稳,刀具的使用寿命得以大幅度提高,是脆性材料精密、高效加工的一种有效方法。而如何利用这些优势实现光学晶体材料的精密超声加工,降低加工表面和亚表面质量损伤,并没有得到充分有效的发挥和应用。

§ 应用举例

超声清洗机

在超声加工机床和工艺参数范围既定的情况下,刀具参数的选择对于加工效果有着至关重要的影响。为了拓展超声加工在航空航天及军工国防领域的应用,单就超声加工刀具方面,作者认为应该从以下几个方面给予充分考虑。

1 、超声加工刀具基体材料选择

在功率超声加工中,要求刀具必须能够承受高频交变载荷,有效传导由变幅杆传递过来的超声能量,因此,对刀具基体的尺寸、截面形状及材料等提出了特殊要求。功率超声加工主要考虑刀具与超声振动系统的匹配连接,使得超声能量得以有效传递,并且在刀具的输出端面上有最大的能量(振幅)输出。因此,要求刀具基体材料具有较低的声阻抗和较高的超声能量极限强度,否则会因为超声能量在传递过程中的耗损而引发刀具发热,严重时可导致刀具断裂、超声振动系统不工作甚至是超声波电源功率器件或线路的烧毁损坏。

由此,在超声加工的实际应用中,考虑上述旋转超声加工对金刚石刀具基体材料的要求,同时结合变幅杆的材料选择以及刀具与变幅杆的声阻有效匹配,需要合理选择金刚石刀具的基体材料。超声加工要求基体材料内部晶粒细小、匀质,不能出现内部裂纹或者气穴等缺陷,否则振动能量会产生反射和衍射,导致能量衰减剧增,从而无法实现超声能量的有效传递,并可能导致裂纹迅速扩展,致使刀具失效。必要时,要对材料进行适当的热处理,调质材料内部晶粒均匀性,降低材料的声阻抗,同时增大其强度。

2、 超声加工刀具基体结构设计

旋转超声加工是超声振动和金刚石刀具切削相结合的高效加工方法,其去除率大大高于单一的传统超声加工和金刚石刀具切磨削加工方法。因此,提高排屑能力和金刚石刀具冷却效果是保证旋转超声加工效率和刀具寿命的重要手段。

根据不同功率大小超声加工机床的实际情况,从能量的有效传递和利用的角度出发,对刀具的结构参数进行合理设计,尤其是工作端面的优化设计,包括工作端面截面大小、形状、壁厚以及水槽的有无和大小等因素。刀具基体的结构设计,一方面要避免刀具结构参数设计不当造成的热和应力集中,另一方面要使得刀具有效地工作在换能振子的工作频带范围内。

3、 超声加工刀具磨料层的制备

在旋转超声加工刀具的设计与制造方面,相比传统超硬磨料刀具在磨削和抛光加工中所引起的广泛注意力,目前关注的还比较少。而刀具作为材料去除的关键因素,其工作端面的几何参数、超硬磨料的种类和粒度、浓度以及制作的工艺等方面都关系到刀具的寿命以及加工表面质量的优劣。

目前,国内外用于旋转超声振动加工的工具均为电镀或者粉末冶金烧结而成的金刚石工具。但是,由于在电镀或者粉末冶金烧结中很难形成金属与金刚石磨料的有效化学冶金结合,因而电镀层或者金属结合剂对金刚石磨料的把持力较小,在较重负荷加工中,金刚石磨料的非正常脱落现象较为严重,导致工具磨损也较为严重,这些都直接制约了旋转超声加工的普及和推广。而钎焊金刚石工具能在结合界面上实现化学冶金结合,从根本上改善磨料、结合剂(钎焊合金材料)和基体三者间的结合强度,在高速高效率磨削中能够承受较大的负荷。作者在前期的旋转超声加工研究中,已经证实钎焊工具完全能够胜任旋转超声加工中的高频冲击加工,而且在加工过程中基本不存在磨粒的脱落和破碎磨损,其工作过程也较为平稳。这为航空和航天等高科技领域中广泛使用的功能晶体材料的精密加工提供了一个非常有利的条件。通过加工工艺参数的优化选择,配合高效钎焊工具的使用,能够克服在传统精密磨削晶体材料时,由于工具的自锐及砂轮上磨粒的破碎和脱落对加工表面的二次损伤,从而提高零件表面的完整性。

§ 发展趋势

超声机械随着传统加工技术和高新技术的发展,超声振动切削技术的应用日益广泛,振动切削研究日趋深入,主要表现在以下几个方面。

1、研制和采用新的刀具材料

在现代制造业中,钛合金、纯钨、镍基高温合金等难加工材料所使用的范围越来越大,对机械零件加工质量的要求越来越高。为了更好地发挥刀具的效能,除了选用合适的刀具几何参数外,在振动切削中,人们将更多的注意力转为对刀具材料的开发与研究上,其中天然金刚石、人造金刚石和超细晶粒的硬质合金材料的研究和应用为主要方向。

2、研制和采用高效的振动切削系统

现有的实验及实用振动切削加工系统输出功率尚小、能耗高,因此,期待实用的大功率振动切削系统早日问世。到目前为止,输出能量为4 kW的振动切削系统已研制出来并投产使用。在日本,超声振动切削装置通常可输出功率1 kW,切削深度为0.01~0.06 mm。

随便看

 

百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/2/22 18:35:15