请输入您要查询的百科知识:

 

词条 谷超豪
释义

§ 概况

1980年当选为中国科学院数学物理学部委员,专长偏微分方程、微分几何和数学物理,撰有《数学物理方程》等专著。研究成果“规范场数学结构”、“非线性双曲型方程组和混合型偏微分方程的研究”、“经典规范场”分别获全国科学大会奖、国家自然科学二等奖、三等奖。 [1]

2010年1月11日,获得了2009年度中国国家最高科学技术奖。 [2]

§ 简介

1926年5月15日,谷超豪出生在温州市,幼年由婶母抚养。

1937年,全面抗战开始,谷超豪进入温州中学。

1943年秋天,谷超豪考上了浙江大学龙泉分校,开始了大学生活。

1948年,谷超豪大学毕业,苏步青选留他作助教。

1948年3月,谷超豪在浙江大学重新加入了中国共产党,成为党组织中一名自觉的先峰战士。

1950年与同门师妹胡和生结为夫妻。

1952年升为浙江大学龙泉分校讲师,1953年转到复旦大学,1956年升为副教授。

1957年赴前苏联莫斯科大学力学数学系进修。

1959年获苏联莫斯科大学物理数学科学博士学位。

1960年后历任复旦大学教授、数学系主任、数学研究所所所长,中国科学技术大学校长,国家科委攀登计划非线性科学科研项目首席科学家。

1980年当选为中国科学院院士(学部委员)。

1994年当选为国际高等学校科学院院士。主要从事偏微分方程、微分几何、数学物理等方面的研究和教学工作,又致力于大学的行政工作,均取得重要成就,为我国数学研究和科学教育事业的发展作出了重要贡献。

2009年8月6日,经国际小行星中心和国际小行星命名委员会批准,编号为171448的小行星命名为“谷超豪星”。[3]

§ 成长经历

幼年生活

谷超豪瓯江蜿蜒流过温州。位于温州市区华盖山麓的高盈里,是一条短而僻静的小巷。1926年5月15日,谷超豪出生在巷子里的一座老式院落里。谷超豪的叔叔因病早逝,父母就把谷超豪交给没有子女的婶母抚养。她把这个侄子视若命根,关怀备至,这是她的悲惨生活的唯一寄托。婶母悲天悯人的性格对谷超豪起到了潜移默化的影响,使他从小善良、纯真、助人为乐。

他5岁入私塾读书认字,接受启蒙教育。两年后进入温州瓯江小学。谷超豪在那里学到了许多自然科学知识,懂得了下雨、打雷等自然现象的成因,成为一个科学的笃信者。当时正值东北三省被日寇占领,祖国面临危亡的时刻。每当老师给同学们讲述近代史上祖国所遭受的耻辱时,谷超豪幼小的心灵上好似扎上了一根根钢针,万分难受,他下决心要为拯救祖国而发奋学习。

谷超豪从小性格文静,聪慧过人,对各门功课都有兴趣。数学、语文、历史、地理、自然等课程,都学得很好。他平时文文雅雅,不太爱说话,不大喜爱运动。但是,在课堂上,他思想活跃,喜欢独立思考。特别是数学,分数与循环小数的互化早在小学三年级时就掌握了,并开始知道数学上有无限的概念。1937年,全面抗战开始,谷超豪进入温州中学。1939年,他父亲、婶婶先后病故。日本鬼子对温州的轰炸也变本加厉。谷超豪第一次离家参加抗战宣传队,写壁报,演街头戏。时代把这位娇生惯养的还不到13岁的小孩,投入了抗日的洪流。不久,学校搬到距离温州有一天路程的青田县。

那里的生活本来就很艰苦,更何况是战争年代。就是在这样艰苦的环境里,谷超豪怀着远大的理想,孜孜不倦地探索大自然的奥秘和追求人类社会发展的真理。温州中学后来汇集了不少回乡的大学老师,拥有雄厚的师资力量,尤其是数学和物理。这对谷超豪来说真是如鱼得水。谷超豪家人

他的语文、社会科学、数理的基础是很全面的,每次考试,成绩都名列前茅。他不满足于课本知识,看了不少课外书,如刘熏宇著的《数学园地》,其中介绍了微积分和集合论的初步思想,使他初步了解到数学中无限的3个层次:循环小数,微积分,集合论。这引起了他对数学更浓厚的兴趣。受他哥哥谷超英的影响,谷超豪是温州中学“五月读书会”的活跃成员。他们除了读进步书籍外,还多次到野外或山上去开会。1940年3月,经冯增荣介绍,谷在青田宣誓加入中国共产党。这时他不满14岁。这一年暑假,谷超豪初中毕业,以第一名的成绩升入高中。

当时环境越来越恶劣,日本侵略者的轰炸,青田也不能幸免。在轰炸、贫困、疟疾折磨下,谷超豪的学业仍遥遥领先,引人注目。同时,他还坚持作地下党工作,学校当局对他的“左”倾思想也有所注意。温州中学至今还保存着他的成绩单,上面记载着突出的各门课程的分数;另一方面,操行成绩只是“及格”。1943年2月春节前夕,支部书记和另一名党员被捕,谷超豪和党组织失去了联系。当年夏天,他从温州中学毕业,结束了中学生活.

求学历程

1943年秋天,谷超豪考上了浙江大学龙泉分校,开始了大学生活.

那时,由于杭州被日本侵略者占据,浙江大学内迁贵州。竺可桢校长认为东南人才荟萃,又考虑到沦陷区青年求学的问题,便在这个浙西南的山城龙泉设立了这所分校。校址是在离城约十余里的一个小村庄里,生活非常艰苦,理、工、农三个学院的一二年级学生挤在一所不大的三层楼房里,几十个人挤住在一个大房间里,几排双人铺之间,只剩下非常狭小的走道。几扇小窗,总算使白天房里还有点亮光。

晚上,成群的臭虫出来袭击,无法入睡。伙食差极了,每餐一小碗青菜,早餐往往只是稀饭加点食盐。饭不够吃,就用秤来平分,人人饥肠辘辘。教室也在这所楼房里。理学院一年级二十来人有间十几平方米的房子,白天上课,晚上自修,晚自修时每人一盏桐油灯,一个小盘子,放点桐油和两三根灯草,点燃起来,满屋都是黑烟,大家的鼻孔都变得黑黑的。更使大家心惊胆战的是,晚上时时传来附近居民求神拜佛的敲打声,原来这里流行着鼠疫,对大家生命构成了极大的威胁。

尽管生活艰苦,师生的教和学却都很努力。一年级的课程很重,有微积分(包括微分方程)、代数方程式论、立体解析几何、普通物理、英语、语文和中国通史等等。数学要做大量习题,物理经常举行临时测验。中学时期由于躲警报和教师生病,有的数学内容并没有教完,此时他结合学微积分,把它们补上了。当时一年级课程并不要求太多的逻辑推理,但对直观能力、演算能力和解应用问题的能力,却有很高的要求。这些训练,为谷超豪打下了扎实的数学基础。谷超豪原来有不太细致的毛病,通过学微积分,逐步克服了。他读了一本用综合方法写的射影几何的著作,完全不用计算,便能把二次曲线的基本性质描述清楚,引起他很大兴趣。他非常喜爱笛沙格(Desargues)定理、帕普斯(Pappus)定理和帕斯卡(Pascal)定理等。从此,他对几何学就有了偏爱。后来,他的许多研究成果,即使是分析的或物理的,都带有几何的风格。 谷超豪

为什么师生们这样努力?因为大家都抱着一个信念:中华民族一定会战胜一切困难,取得最后的胜利。在生活上,大家也在寻求乐趣。比如,大家住的那个村庄原名“坊下”,师生们都赋予它一个美丽的名字,称它为“芳野”(方言读音相近),许多老师住在一所简陋的木头房子里,周围是树林,十分荒凉,这所楼房被命名为富有诗意的“风雨龙吟楼”。风雨如晦,知识分子仍然别有自己的一番意境。

1944年暑假,谷超豪回家了。因敌军占领,他被困温州一年,闭门读书,为弟妹等补习功课,挨过了故乡这充满着灾难的一年。直至1945年抗战胜利后才于9月份去龙泉复学。不久,随学校迁回到杭州。

在专业学习的同时,谷超豪和同学共同组织了“求是学社”,并担任负责人。他们阅读《新民主主义论》、《论联合政府》、《整风文献》等书。1946年暑期,谷超豪和一些同乡同学在故乡温州成立了“大专学生暑假联谊会”,向中学生宣传大学里的学生运动、讲时事。当时,一艘外国商船非法驶入瓯江。对这悍然侵犯我国主权的事件,当地政府听之任之。谷超豪和联谊会成员、中学生、温州市民,却向外国商船抗议,终于把它驱逐出港。这一行动受到了浙南党组织的重视,负责温州城乡工作的曾绍文找到了谷超豪。这样,中断了三年之后,他又和党组织联系上了。浙大学生会要改选了。谷超豪由于在历次运动中做了不少工作,热心为同学服务,而且功课好,所以在学生中威信很高。竞选期间,学校的壁报上出现了一条醒目标语:科学+民主=谷超豪。开票时,谷超豪以一千多票的最高票数,当选为学生会主要负责人之一。在震动全国的于子三事件中他始终站在前列。当时,竺可桢校长和苏步青教授等师长都爱护学生。谷超豪凭着出色的学习成绩也赢得了师长的信任,他努力争取师长们对学生运动的同情。在迎接解放的日子里,谷超豪除了在学生中发展党员外,他以进步团体华社、科学时代社等为依靠,在校内外进行了大量的活动。根据上级指示,他们把杭州的科学工作者协会向浙大以外发展,以团结科技人员,他经常去校外华丰造纸厂、电厂、雷达研究所等单位。

1949年2月底,杭州市委决定成立科协党组,由他担任组长。由于广大科技工作者的支持,他们所联系的科技企业单位,都完整地保存下来。谷超豪直接联系的雷达研究所,是一个军事单位,所内广大群众进行了机智的斗争,终于顶住了沉重的压力,抵制了南迁的命令,于杭州解放时举行了起义,成为新中国的第一支雷达部队,它后来在抗美援朝中立了战功。

§ 工作经历

1949年,杭州解放,谷超豪被调到中国科协杭州分会工作,担任分会秘书和党组书记。他把杭州市的科技人员团结在科协周围,组织全市科学家为经济建设出谋划策,科普工作搞得有声有色。杭州分会的地址在长生路4号,当年在杭州的一些科技界人士,至今还亲切地回忆起“长生路4号精神”,那就是齐心协力让科学为人民服务的精神。然而,忙于科协工作的他,总感到生活中缺少了什么。当他意识到是因为离开了那些图形、概念、定理和公式以后,他才感到自己的一生是再也离不开数学了。他向领导部门提出了要求:不中断数学研究与教学。青春年华,精力充沛。白天,他在科协忙碌,去浙大听课和做教学工作,晚上就在宿舍里研究数学,直至深夜。苏步青在为青年教师开的课程中,提出了K展空间理论方面的一个未能解决的问题,谷超豪立刻被迷住了。两星期后的一天晚上,已经相当疲倦的谷超豪的大脑思维又开始异常活跃起来,K展空间,子流形,子流形的子流形……一个新的想法形成了。

谷超豪最早的微分几何论文《隐函数方程式表示下的K展空间理论》的思想形成了,用近来的数学术语来说,这便是“分叶”的思想,这思想很快被他利用来解决了苏步青提出的问题。1951年,这篇论文在《中国科学》上发表,引起了国际数学界的注目。谷超豪1951年春天,他作为中国科协代表团的五个成员之一,和梁希、茅以升等到捷克斯伐洛克去参加世界科协理事会。临行前,周总理亲自接见了他们,对重大的原则问题作了指示,并立即同意他们在苏联参观三周的要求。参观活动,再一次激起了谷超豪的数学热情。

1951年,国家发出了“革命青年向科学进军”的号召,这对处在科协工作和数学研究矛盾中的谷超豪来说,无疑是解脱的一个机会。苏步青教授看出谷超豪在数学上的才能和前景,便向浙江省文教当局提出调动他的工作的建议,使谷回到了浙江大学。1952年升为讲师,1953年转到复旦大学。

1956年升为副教授。那一年,谷超豪出席了全国先进工作者代表大会。作为主席团成员之一,他受到了国家领导人的接见。华罗庚也很早注意到这位数学界的新秀。谷超豪去北京,华曾几次请他吃饭,并鼓励他要做出有自己特色的、系统的工作。谷超豪非常感动,并把这些教导牢记在心。

1957年,谷超豪去莫斯科大学力学数学系进修之前,从事了微分几何领域的仿射联络空间和芬斯拉空间的研究。这时他己看到,微分几何的研究必须整体化,不能只限于局部性质。他就两类空间的整体的嵌入问题得出了完整的结果。

莫斯科大学微分几何教研组有两个学派。一派以菲尼柯夫为首,另一派以拉舍夫斯基为主。谷超豪到了莫斯科,这两位教授都对他很赏识。拉舍夫斯基马上请他在讨论班作学术报告,菲尼柯夫便到这个讨论班听谷超豪报告。他们对谷超豪的报告,表现出极大的兴趣,都把他看成是自己“学派”中的人。

经过一段时间的调查研究,谷超豪便确定以“无限连续变换拟群”为主攻方向。这一领域是19世纪数学大师S。李和20世纪著名几何学家E。嘉当发展起来的,由于难度高,所以发展缓慢。谷超豪赴苏前,就听过苏步青以E。嘉当所著的《黎曼几何》为教材的课程,他又精读过这本书的法文版。嘉当的思想和方法的心领神会和莫斯科大学的优越学术环境,终于读完了E。

嘉当在这一方面的主要著作,并且得到一系列新成果。他每隔两三周就在讨论班上作一次报告,深得同行们的赞赏。他到莫斯科仅一年的时间,参加讨论班的教授们一致认为应该授予这位来自中国的学者以科学博士的学位。谷超豪的博士论文的题目是《论变换拟群的某些通性及其在微分几何中的应用》。

答辩会在1959年6月举行,著名数学家刘斯杰尼克任答辩委员会主席。谷超豪从容不迫,侃侃而谈,回答了答辩委员会提出的问题。他巧妙的构思,令人信服的工作,得到了专家们一致高度的评价,投票建议授予他莫斯科大学物理-数学科学博士学位。依照苏联的学位制度,获得博士学位是很艰难的.这是迄今为止莫斯科大学唯一的中国博士。评述人称赞他继近代最有名的微分几何大师E.嘉当之后,在这个领域里第一个作出了有实质性的发展和推进的人。当时在莫斯科大学,谷超豪还参加了由莫斯科大学校长彼得罗夫斯基院士领导的偏微分方程讨论班,为他日后从事这个领域的工作打下了基础。

1960年,谷超豪的夫人胡和生也进入了变换拟群的研究。胡和生是苏步青的研究生,1952年完成了研究生的学业后,在院系调整时随苏到了复旦大学。谷、胡两人为了事业着想,一直到1957年才结婚。谷超豪从苏联回来后,她对谷的工作非常有兴趣,进一步研究齐性黎曼空间,得出了决定黎曼空间运动解的全部定隙性的有效的方法,并确定了前面八个定隙,解决了60年前意大利著名数学家福比尼所提出的问题。

他们有关齐性黎曼空间的结果,整理在专著《齐性空间微分几何学》(上海科技出版社出版,1964年)中,此外,谷超豪在1959年学成回国后,还决定了能作为无限连续群的迷向群的所有实不可约线性群,也处于国际前列。当时和国外交流不畅,谷超豪又忙于许多新任务和新课题,博士论文也无暇整理出版,所以有的结果国外并不知道。

§ 学术研究

由于谷超豪在政治上的经历和业务上取得了突出成就,复旦大学号召广大师生学习谷超豪走又红又专的道路.1960年,他升为教授.他又不断在新的研究领域取得成果.第二次世界大战期间,由于原子弹、导弹、超音速飞机的相继问世,给数学领域带来了非线性双曲型方程和混合型方程求解的研究课题,刺激了这一研究方向的迅猛发展.苏、美等国的许多著名数学家都相继投入了这方面的研究.谷超豪从苏联学成回国后,立志为祖国发展空间科学作一些有关的基础性研究工作,为此,需要建立一支专门从事偏微分方程研究的队伍,于是,他在复旦大学数学研究所里组织了课题组(现在已发展成为在国内外享有声誉的复旦大学数学研究所微分方程研究室),他密切注意这种方程组和流体力学间的联系。他和学生们合作,解决了间断初始值局部解存在性问题,写成论文《拟线性双曲型方程组的不连续初始值问题》。

他还写成了论文《双曲型方程组的一个边界问题和它的应用》(《数学学报》,1963),解决了超音速机翼绕流的数学问题.他的学生李大潜、俞文在这些工作基础上,完整地建立了两自变数拟线性双曲型方程组的边值问题局部解的理论.以上这些工作因过去交流较少,国外科学家知道得不多,70年代末当他们知道这些结果后,感到相当意外,并认为谷超豪等人当时在这方面的工作走在他们前面十多年.

接着谷超豪在高音速的锥形流和跨音速流问题的教学和研究中,遇到了混合型方程的边值问题.一开始他就绕过传统的路线,致力于发展1958年弗里德里希斯(Friedrichs)所提出的正对称方程组的理论,他把当时已有的一阶可微性理论发展为高阶可微性的理论,从而成为一项讨论线性方程以及拟线性方程经典解存在性的有效工具。

在论文《一类多自变数的混合型偏微分方程》(《中国科学》,1965)中,他建立了一大类多自变数的混合型方程的解的存在性定理,这在国际上是首次.他还发现了较为奇特的新性质:对这种二阶方程,有某些闭区域,即使在边界上给出两个边界条件解仍然存在且唯一的,如果变动一下方程的低阶项,不给定边界条件,解也只能有一个。12年后,美国数学家代表团访问中国,在访问报告中称赞谷的工作是“十分新颖和相当重要的”。

正当谷超豪和他的研究小组的工作取得丰硕成果而且在迅速发展时,1966年开始的那一场浩劫把这一切都搞乱了,大字报铺天盖地,抄家、无休止的批斗、隔离审查、强迫劳动……谷超豪默默地承受着.在劳动中,爬屋顶、捅下水道、扫厕所样样都干,而且干得认真。

在农村劳动中,有些人刁难他,让他干力不能及的事,他还是挣扎着干.农民同情他,对工宣队说:“谷超豪的劳动由我们生产队来安排。”把他保护起来。对此,他深为感动。最使谷超豪心疼的是他的科研工作被迫停止了。校外有些工程单位多次来复旦,要求谷超豪参加他们的研究工作,先后被回绝。

1973年,一个研究空间技术的单位直接找到了谷超豪,市里的有关机构也同意他参与此项研究,但又被单位领导否决,谷超豪为此伤心地流泪,后经力争,终于同意他“从旁协助”。当然,在实际工作中他仍然是带头人,使他有幸能把自己掌握的高速空气动力学和混合型方程的知识用到实际问题的研究中去。

在此期间,谷超豪领导的课题组完成了一系列的实际应用课题,用极其简陋的电子计算机有效地进行了“球、锥形等飞行器超音速有攻角绕流的气动力计算”和“绕蚀外形气动力计算”等。有关单位对以上课题作了如下的评价:“这些课题是国内首次较完整的结果,与某指挥部的实验数据相符合,协助了某型导弹头再入计算摸拟综合课题的完成.”

1974年6月,杨振宁到复旦大学作规范场理论报告并建议进行共同研究。规范场理论研究基本粒子结构及其相互作用的规律,牵涉到一系列复杂的现代数学。在报告会上,谷超豪等数学系、物理系的教师作出了热烈反响,使杨振宁认识到复旦的数学家们不仅有雄厚的理论基础和研究能力,还有对现代物理学问题的深入了解。复旦方面成立了由谷超豪任组长的联合研究小组,开始了共同研究。

杨振宁感到意外的是,几天后,谷超豪和胡和生就对规范场的数学结构获得了两项研究成果,在国际上最早证明了杨-米尔斯(Mills)方程的初始问题的局部解的存在性,又弄清了无源规范场和爱因斯坦引力论的某些联系和区别。其后,小组又陆续做出新的成果,发表了《规范场理论若干问题》的论文.这以后,杨振宁又两次来复旦合作研究,都取到了很有意义的成果。这些使杨十分高兴,一再热情地向谷超豪发出赴美研究的邀请。

当春风重新吹绿祖国大地的时候,谷超豪已是五十岁人了.仗着坚实的理论基础和科学上的进取精神,他很快便在数学的几个研究领域接连取得了新的国际领先的成果,受到了国际数学界的瞩目。其中的一些研究成果难度很高,甚至被认为是“属于下一世纪”的问题。

1977年,谷超豪作为中国高等教育代表团成员访问美国。在加州大学贝克莱分校、麻省理工学院、纽约州立大学石溪分校、马里兰大学,谷超豪就偏微分方程和规范场的数学结构用英语作了四次学术报告,受到听讲的数学家、物理学家的欢迎。

陈省身教授写信给中科院数学所,赞赏谷超豪的成就。任之恭教授等还向我驻美联络处表示祝贺。访美期间,谷超豪还访问了被誉为国际偏微分方程研究中心的美国纽约大学柯朗数学研究所,拜访了著名老数学家弗里特里克斯,当年正是他提出了正对称方程组的理论。谷超豪谈到了自己以此理论为工具研究混合型偏微分方程的情况,75岁的弗里特里克斯特别高兴,他说,谷超豪的工作实现了他想把正对称方程进一步用于混合型方程的夙愿。

§ 先生寄语

对青年学者的建议

我觉得国家最需要的事情都要努力去做,做学问总是得耐得住寂寞,不是每个人都能很快得到认可和重视。不过数学的应用比较间接,所以一旦看中了重要的问题,对国家建设起重要作用的,都应该努力去做。我自己搞数学研究的经验就是要对创造感兴趣,对新鲜事物感兴趣才可能有新的研究成绩出来。

对学生的建议

数学能够把各种复杂的现象都描述得非常好。年轻人都应该学点数学,即使本科学数学,以后转到别的领域去也没有关系。因为数学总是能够在各行各业都发挥一点作用。生活中有很多数学的小游戏,年轻人都可以试一试的。

生活中有很多数学的问题,包括池塘水的频率、太阳升起落下的规律,都可以用数学的办法解决,尤其是多观察自然现象,从自然现象中发现问题,用数学方法解决,比如我最喜欢的预测台风,基本规律很简单,就是台风是从南往北走,而且是反螺旋形的,而且风向可以看雨点方向掌握,风速可以根据经验估算,通过简单的运算就可以当场预测台风了,而且比较准。

对老师的建议

有人认为现在要培养聪明人,还有人认为要培养专业人。我认为要培养重视创造,重视思维能力的人。

老师不能满足于上课给学生讲点内容,应该多给学生提点问题,帮助学生成长,但是不能号召他们去做那些没有条件做的事。也不能搞题海战术,单纯地让他们记住解题方式。其实现在有很多问题需要解决,我们做老师的应该不断启发学生的创新兴趣,而不是让学生去胡思乱想,这样才能提高学生的创新意识和创新能力。如果学生都能够被调动起来的话,既可以提高创新能力和研究水平,又能够解决更多的实际问题。

老师应该给学生的除了上课内容以外,要尽可能地让学生了解科学界最前沿的研究,这样学生的兴趣才会更广泛,眼界也会更高一点,视野也会更广,这些不论是继续从事研究还是转行都有好处。培养研究生的时候,要让研究生发挥自己的作用。好多人招学生,都是名义学生,这样会影响学生质量。

对于业余爱好的见解

我的业余爱好就是解决问题,思考问题。我还喜欢古典文学,尤其是诗歌,因为和数学具有规律性一样,诗歌的对仗也是一种规律,非常优美。我最喜欢的诗是杜甫的诗,因为他的诗大多数是反映社会民生的问题。李白的诗歌也很好,比较豪放一点。还有些诗人的诗歌也很好,但是我的欣赏水平不高,所以欣赏不到它们的优美。我喜欢看的书是《三国演义》 ,这是一本聪明的书,里面写了很多聪明的人,做了聪明的事。我觉得年轻人可以看看这本小说。现在我的业余爱好是思考广义相对论。

随便看

 

百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/12/20 4:22:46