词条 | 足球烯 |
释义 | § 来源 1985年,Rice大学的H.W.Kroto和R.E.Smalley等发现用激光束使石墨蒸发,用10大气压的氦气产生超声波,在喷咀上能生成性质十分稳定的一种新的碳的同素异形体。经过飞行时间质谱证实,它的确不含其它元素,其组成主要是C60。Kroto等为了纪念前驱研究者Buckminster Fuller,将这个球形分子称为Buckminsterfullerene或者简称为“布克球”(Buckyball)。 § 介绍 他们认为这种碳单质既然具有确定的组成,显然就不会像石墨或金刚石一样构成无限庞大的分子。按照碳原子价键的要求,它可能具有球形结构。它以60个碳原子作为顶点,组成一个32面体。其中12个面是正边形,20个面是六边形。正好是一个削20面体的每个顶点,像足球一样的多边形体,如图1所示。在这样的分子中,每个碳原子都满足sp2杂化轨道的要求:与其它三个碳原子相连,等价地组成一个五员环和两个六员环。由于它具有这种特殊结构,因此现在更形象地称它为足球烯(footballene, soccerballene)。 按照正常的碳—碳键的键长计算,C60构成的球体直径大约为7 A0 ,它的内腔至少可以容纳一个直径为5 A0 的客体原子。根据这种思想,Smalley又设计将石墨板浸泡在沸腾的三氯化镧饱和溶液中,干燥后将它作为靶子,用激光蒸发,使镧原子嵌入球体内部。从而发现了一系列分别由44个到76个碳原子和一个镧原子组成的碳—镧化合物。显然这是一种包合物【2】。 事实上,12个正五边形不仅只能和20个六边形构成C60的封闭壳,还可以和其它若干个六边形组成蛋形的多面体,而镧原子的存在,使其它形式的多面体也趋于稳定。 和C60分子有关的“碗烯”(corranulene)分子【3】,C20H10,具有一个由五个正六边形环绕的正五边形结构,如图2所示。这个化合物早已于1966年由Michigan大学的R.G.Lawton合成成功。它的分子构型像一个碗,有芳香性,而且很稳定。而足球烯分子的表面,就存在着这样的12个正五角形单元。C60分子具有Ih点群的对称性,是一个“非交替烃”(non-alternant hydrocarbon)。 曾经有好几位学者对C60作过HMO计算【4】,并将C60和其它芳香烃的离域能(delocalization energy)和共振能进行比较。结果表明其共振稳定性大约是苯分子中每个碳原子的平均共振能的两倍。虽然在这个分子中碳原子并不都是完全共平面的,因此会出现一些张力,但是它的共振结构数高达12500,因而可以使体系稳定化。如果考虑到C60多面体分子中π键与σ键的交角大约是11.60,用0.877校正其共振积分,按POAV1/3D HMO法计算,仍然可以明显地看出它具有较高的π电子能。 § C60的超导性 1991年,赫巴德(Hebard)等首先提出掺钾C60具有超导性,超导起始温度为18K,打破了有机超导体(Et)2Cu[N(CN)2]Cl超导起始温度为12.8 K的纪录。不久又制备出Rb3C60的超导体,超导起始温度为29K。表6-1列出了已合成的各种掺杂C60的超导体和超导起始温度,说明掺杂C60的超导体已进入高温超导体的行列。我国在这方面的研究也很有成就,北京大学和中国科学院物理所合作,成功地合成了K3C60和Rb3C60超导体,超导起始温度分别为8 K和28K。有科学工作者预言,如果掺杂C240和掺杂C540,有可能合成出具有更高超导起始温度的超导体。 § C60的潜在应用前景 除了超导领域以外,C60在以下几个方面也具有广泛的应用前景。 ①气体的贮存 利用C60独特的分子结构,可以将C60用作比金属及其合金更为有效和新型的吸氢材料。每一个C60分子中存在着30个碳碳双键,因此,把C60分子中的双键打开便能吸收氢气。现在已知的C60的稳定的氢化物有C60H24、C60H36和C60H48。 在控制温度和压力的条件下,可以简单地用C60和氢气制成C60的氢化物,它在常温下非常稳定,而在80 ℃~215℃时,C60的氢化物便释放出氢气,留下纯的C60,它可以被100%地回收,并被用来重新制备C60的氢化物。与金属或其合金的贮氢材料相比,用C60贮存氢气具有价格较低的优点,而且C60比金属及其合金要轻,因此,相同质量的材料,C60所贮存的氢气比金属或其合金要多。 C60不但可以贮存氢气,还可以用来贮存氧气。与高压钢瓶贮氧相比,高压钢瓶的压力为3.9×106Pa,属于高压贮氧法,而C60贮氧的压力只有2.3×105Pa,属于低压贮氧法。利用C60在低压下大量贮存氧气对于医疗部门、军事部门乃至商业部门都会有很多用途。 ②有感觉功能的传感器 由于用C60薄膜做基质材料可以制成手指状组合型的电容器,用它来制成的化学传感器具有比传统的传感器尺寸小、简单、可再生和价格低等优点,可能成为传感器中颇具吸引力的一种候选产品。 ③增强金属 提高金属材料的强度可以通过合金化、塑性变形和热处理等手段,强化的途径之一是通过几何交互作用,例如将焦炭中的碳分散在金属中,碳与金属在晶格中相互交换位置,可以引起金属的塑性变形,碳与金属形成碳化物颗粒,都能使金属增强。 在增强金属材料方面,C60的作用将比焦炭中的碳更好,这是因为C60比碳的颗粒更小、活性更高,C60与金属作用产生的碳化物分散体的颗粒大小是0.7 nm,而碳与金属作用产生的碳化物分散体的颗粒大小为1 μm~5 μm,在增强金属的作用上有较大差别。 ④新型催化剂 在发现C60以后,化学家们开始探讨C60用于催化剂的可能性。C60具有烯烃的电子结构,可以与过渡金属(如铂系金属和镍)形成一系列络合物。例如C60与铂、锇可以结合成{[(C2H5)3P]2Pt}C60和C60OsO4·(四特丁基吡啶)等配位化合物,它们有可能成为高效的催化剂。 日本丰桥科技大学的研究人员合成了具有高度催化活性的钯与C60的化合物C60Pd6。中国武汉大学的研究人员合成了Pt(PPh3)2C60(PPh3为三苯基膦),对于硅氢加成反应具有很高的催化活性。 ⑤光学应用 具有独特微观结构的C60具有特殊的光学性质,其中令人感兴趣的光学性质之一是光限制性,即在增加入射光的强度时,C60会使光学材料的传输性能降低。 光限制性对于保护眼睛具有重要意义。以C60的光学限制性为基础,可研制出光限制产品,它只允许在敏化阈值以下(即对眼的危险阈值以下)的光通过,这样就起到了保护人眼免受强光损伤的作用。 ⑥癌细胞的杀伤效应 C60经光激发后有很高的单线态氧的产率,而单线态氧与生物机体的生理生化功能、组织损伤、肿瘤以及光化治疗技术都有着重要关系。 当对C60的激发光强度达到4 000 lx时,癌细胞受单线态氧的作用已接近100%死亡,因此能有效地破坏癌细胞的质膜和细胞内的线粒体中质网和核膜等重要的癌细胞结构,从而导致癌细胞的损伤乃至死亡。 还有的研究指出,可以将肿瘤细胞的抗体附着在C60分子上,然后将带有抗体的C60分子引向肿瘤,也可以达到杀伤肿瘤细胞的目的。 ⑦其他医疗功能 C60的衍生物具有抑制人体免疫缺损蛋白酶的活性的功能。人体免疫缺损蛋白酶是一种导致艾滋病的病毒,因此,C60的衍生物有可能在防治艾滋病的研究上发挥作用。 C60还适宜于在生物系统中充当自由基清除剂和水溶性抗氧剂,自由基是导致某些疾病甚至肿瘤的有害物质,C60可望能够降低患病者血液中自由基的浓度,还可抑制畸形的和患病细胞的生长。 |
随便看 |
百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。