请输入您要查询的百科知识:

 

词条 贪心算法
释义

§ 贪心算法

一、算法思想

贪心法的基本思路:

——从问题的某一个初始解出发逐步逼近给定的目标,以尽可能快的地求得更好的解。当达到某算法中的某一步不能再继续前进时,算法停止。

该算法存在问题:

1. 不能保证求得的最后解是最佳的;

2. 不能用来求最大或最小解问题;

3. 只能求满足某些约束条件的可行解的范围。

实现该算法的过程:

从问题的某一初始解出发;

while 能朝给定总目标前进一步 do

求出可行解的一个解元素;

由所有解元素组合成问题的一个可行解;

二、例题分析

1、【背包问题】有一个背包,背包容量是M=150。有7个物品,物品可以分割成任意大小。

要求尽可能让装入背包中的物品总价值最大,但不能超过总容量。

物品 A B C D E F G

重量 35 30 60 50 40 10 25

价值 10 40 30 50 35 40 30

§ 分析

目标函数: ∑pi最大

约束条件是装入的物品总重量不超过背包容量:∑wi<=M( M=150)

(1)根据贪心的策略,每次挑选价值最大的物品装入背包,得到的结果是否最优?

(2)每次挑选所占空间最小的物品装入是否能得到最优解?

(3)每次选取单位容量价值最大的物品,成为解本题的策略。 ?

§ 贪心算法的基本要素

对于一个具体的问题,怎么知道是否可用贪心算法解此问题,以及能否得到问题的最优解呢?这个问题很难给予肯定的回答。但是,从许多可以用贪心算法求解的问题中看到这类问题一般具有2个重要的性质:贪心选择性质和最优子结构性质。

1、贪心选择性质

所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。动态规划算法通常以自底向上的方式解各子问题,而贪心算法则通常以自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。 对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所作的贪心选择最终导致问题的整体最优解。

2、最优子结构性质

当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。

随便看

 

百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/12/20 4:47:30