词条 | 膜分离 |
释义 | 膜分离 - 膜分离 膜分离是在20世纪初出现,20世纪60年代后迅速崛起的一门分离新技术。膜分离技术由于兼有分离、浓缩、纯化和精制的功能,又有高效、节能、环保、分子级过滤及过滤过程简单、易于控制等特征。膜分离技术是用半透膜作为选择障碍层、在膜的两侧存在一定量的能量差作为动力,允许某些组分透过而保留混合物中其他组分,各组分透过膜的迁移率不同,从而达到分离目的的技术。是一种属于传质分离过程的单元操作。膜可以是固态或液态,所处理的流体可以是液体或气体,过程的推动力可以是压力差、浓度差或电位差。目前,膜分离主要包括渗透、反渗透、超滤、透析、电渗析、液膜技术、气体渗透和渗透蒸发等方法。 膜是具有选择性分离功能的材料。利用膜的选择性分离实现料液的不同组分的分离、纯化、浓缩的过程称作膜分离。它与传统过滤的不同在于,膜可以在分子范围内进行分离,并且这过程是一种物理过程,不需发生相的变化和添加助剂。膜的孔径一般为微米级,依据其孔径的不同(或称为截留分子量),可将膜分为微滤膜、超滤膜、纳滤膜和反渗透膜,根据材料的不同,可分为无机膜和有机膜,无机膜主要还只有微滤级别的膜,主要是陶瓷膜和金属膜。有机膜是由高分子材料做成的,如醋酸纤维素、芳香族聚酰胺、聚醚砜、聚氟聚合物等等 1748年法国学者A.诺勒开创了膜渗透现象的研究。20世纪40年代中期出现人工离子交换膜,开始了电渗析的工业应用。1960年,S.洛布和S.索里拉金首先用醋酸纤维素制成非对称性反渗透膜,开拓了反渗透的实际应用。1968年,美籍华裔学者黎念之最先研究乳化液膜的形成方法和渗透机理,开拓了液膜分离技术。中国自1958年开始研究电渗析,1966年开始研究反渗透,现已对膜分离技术的各个领域开展了研究工作,并推广于工业应用。 膜分离 - 膜的类别和结构 膜分离的效能,取决于膜本身的属性。膜可分液膜和固体膜。固体膜又可分:①无机多孔膜,由无机质的多孔材料构成。将胶体和不溶性微粒强制沉积于无机多孔膜上便制成动力形成膜。②合成膜,通常采用醋酸纤维素、芳香族聚酰胺、聚砜、聚乙烯、聚丙烯等高分子材料制成。合成膜又分为离子交换膜、均质膜和多孔膜。离子交换膜由带有可电离的阳离子或阴离子的高分子材料所构成;均质膜是均匀的高分子薄膜;多孔膜是在铸膜液中加发孔剂,经过蒸发和凝胶分离而成的。多孔膜又分为非对称膜和复合膜。非对称膜(见图)的膜体可分为表皮层和支撑层,表皮层质地致密,厚度很小(0.1~0.2μm),但它决定了膜的选择性和渗透性能;支撑层具有多孔结构,它提供必要的机械强度。膜的结构可通过调节铸膜液组成和凝胶形成条件予以控制。复合膜是以多孔膜作支撑层,覆以极薄的表皮层。用于工业分离的合成膜,可制成片状、管状和中空纤维状(见彩图)等,因此膜分离设备也随之具有多种结构形式。膜的结构形态,通常借助于电子显微镜技术、电子透射或扫描来观察。 膜分离 过程分类 按所用的膜,分为液膜分离和合成膜分离。液膜分离过程分为乳化液膜和固定液膜的分离过程。合成膜的分离过程(见图)包括微过滤、超过滤、反渗透、气体渗透分离、渗透蒸发、渗析及电渗析等过程。 膜分离 膜分离过程可简化为渗透过程。渗透过程的机理研究尚处于发展之中,有多种描述方法,目前尚未得出统一的理论。渗透的基本问题是膜内传递的概念。物质在膜内的传质通量可概括为:传质通量=渗透系数×传递推动力式中传质通量为单位时间内单位膜面积的物质透过量;渗透系数为单位时间内单位膜面积在单位推动力作用下的物质透过量;传递推动力有多种,各有其计量单位。渗透系数不仅取决于渗透物质的属性,也取决于膜材料的化学属性和膜的物理构型(见表)。 膜分离描述膜渗透机理的主要模型有: ①溶解-扩散模型适用于液体膜、均质膜或非对称膜表皮层内的物质传递。在推动力作用下,渗透物质先溶解进入膜的上游侧,然后扩散至膜的下游侧,扩散是控制步骤。例如气体的渗透分离过程中,推动力是膜两侧渗透物质的分压差。当溶解服从亨利定律(见相平衡关联)时,组分的渗透率是组分在膜中的扩散系数和溶解度系数的乘积。混合气体的分离依赖于各组分在膜中渗透率的差异。 溶解-扩散模型用于渗透蒸发(又称汽渗,上游侧为溶液,下游侧抽真空或用惰性气体携带,使透过物质汽化而分离)时,还须包括膜的汽液界面上各组分的热力学平衡关系。 ②优先吸附-毛细管流动模型 由于膜表面对渗透物的优先吸附作用,在膜的上游侧表面形成一层该物质富集的吸附液体层。然后,在压力作用下通过膜的毛细管,连续进入产品溶液中。此模型能描述多孔膜的反渗透过程。 ③从不可逆热力学导出的模型 膜分离过程通常不只依赖于单一的推动力,而且还有伴生效应(如浓差极化)。不可逆热力学唯象理论统一关联了压力差、浓度差、电位差对传质通量的关系,采用线性唯象方程描述这种具有伴生效应的过程,并以配偶唯象系数描述伴生效应的影响。 膜分离 - 应用 膜分离技术的发展和应用,为许多行业,如纯水生产、海水淡化、苦咸水淡化,电子工业、制药和生物工程、环境保护、食品、化工、纺织等工业,高质量地解决了分离、浓缩和纯化的问题,为循环经济、清洁生产提供依托技术。 参考书目 王振堃等著:《电渗析和反渗透》,上海科学技术出版社,上海,1980。 P.Meares,Membranes Separation Processes,Elsevier Scientific Pub.Co.,Amsterdam,1976. 膜分离 - 膜分离技术发展史、现状 发展史 膜在大自然中,特别是在生物体内是广泛存在的,但我们人类对它的认识、利用、模拟直至现在人工合成的历史过程却是漫长而曲折的。我国膜科学技术的发展是从1958年研究离子交换膜开始的。60年代进入开创阶段。1965年着手反渗透的探索,1967年开始的全国海水淡化会战,大大促进了我国膜科技的发展。70年代进入开发阶段。这时期,微滤、电渗析、反渗透和超滤等各种膜和组器件都相继研究开发出来,80年代跨入了推广应用阶段。80年代又是气体分离和其他新膜开发阶段。 现状 随着我国膜科学技术的发展,相应的学术、技术团体也相继成立。她们的成立为规范膜行业的标准、促进膜行业的发展起着举足轻重的作用。半个世纪以来,膜分离完成了从实验室到大规模工业应用的转变,成为一项高效节能的新型分离技术。1925年以来,差不多每十年就有一项新的膜过程在工业上得到应用。 由于膜分离技术本身具有的优越性能,故膜过程现在已经得到世界各国的普遍重视。在能源紧张、资源短缺、生态环境恶化的今天,产业界和科技界把膜过程视为二十一世纪工业技术改造中的一项极为重要的新技术。曾有专家指出:谁掌握了膜技术谁就掌握了化学工业的明天。 80年代以来我国膜技术跨入应用阶段,同时也是新膜过程的开发阶段。在这一时期,膜技术在食品加工、海水淡化、纯水、超纯水制备、医药、生物、环保等领域得到了较大规模的开发和应用。并且,在这一时期,国家重点科技攻关项目和自然科学基金中也都有了膜的课题。 目前,这一潜力巨大的新兴行业正在以蓬勃的激情挑战市场,为众多的企业带来了较为显著的经济效益、社会效益和环境效益。 膜分离 - 膜分离的优点 l 在常温下进行 有效成分损失极少,特别适用于热敏性物质,如抗生素等医药、果汁、酶、蛋白的分离与浓缩 2 无相态变化 保持原有的风味,能耗极低,其费用约为蒸发浓缩或冷冻浓缩的1/3-1/8 3 无化学变化 典型的物理分离过程,不用化学试剂和添加剂,产品不受污染 4 选择性好 可在分子级内进行物质分离,具有普遍滤材无法取代的卓越性能 5 适应性强 处理规模可大可小,可以连续也可以间隙进行,工艺简单,操作方便,易于自动化 膜分离 - 常用的膜分离过程 1 微滤 鉴于微孔滤膜的分离特征,微孔滤膜的应用范围主要是从气相和液相中截留微粒、细菌以及其他污染物,以达到净化、分离、浓缩的目的。 具体涉及领域主要有:医药工业、食品工业(明胶、葡萄酒、白酒、果汁、牛奶等)、高纯水、城市污水、工业废水、饮用水、生物技术、生物发酵等。 2 超滤 早期的工业超滤应用于废水和污水处理。三十多年来,随着超滤技术的发展,如今超滤技术已经涉及食品加工、饮料工业、医药工业、生物制剂、中药制剂、临床医学、印染废水、食品工业废水处理、资源回收、环境工程等众多领域。 3 纳滤 纳滤的主要应用领域涉及:食品工业、植物深加工、饮料工业、农产品深加工、生物医药、生物发酵、精细化工、环保工业…… 4 反渗透 由于反渗透分离技术的先进、高效和节能的特点,在国民经济各个部门都得到了广泛的应用,主要应用于水处理和热敏感性物质的浓缩,主要应用领域包括以下:食品工业、牛奶工业、饮料工业、植物(农产品)深加工、生物医药、生物发酵、制备饮用水、纯水、超纯水、海水、苦咸水淡化、电力、电子、半导体工业用水、医药行业工艺用水、制剂用水、注射用水、无菌无热源纯水、食品饮料工业、化工及其它工业的工艺用水、锅炉用水、洗涤用水及冷却用水 5 其他 除了以上四种常用的膜分离过程,另外还有渗析、控制释放、膜传感器、膜法气体分离等。 |
随便看 |
百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。