词条 | 沼气发酵 |
释义 | 在自然界中绿色植物经光合作用合成碳水化合物,主要形成糖、淀粉、纤维素等。纤维素合成的数量最大,贮量也最多,是地球上很难被微生物分解的物质。在好氧条件下,纤维素可被少数微生物氧化分解,最终产生CO2和H2O。目前所知绿色木霉是分解纤维素最强的微生物。 (C6H10O5)n+nO2→nCO2+nH2O 在厌氧条件下,纤维素经厌氧微生物发酵作用最终产生CH4。 在自然界形成甲烷的地方主要有沼泽地、水稻田、井地、河湖淤泥及反刍动物瘤胃。反刍动物瘤胃具有产甲烷的良好条件,所以瘤胃被称为产甲烷的天然高效能的连续发酵罐。 § 1.甲烷形成的微生物学过程 从有机物质厌氧发酵到形成甲烷,是非常复杂的过程,不是一种细菌所能完成的,是由很多细菌参与联合作用的结果。 (1)联合作用 从有机物到甲烷形成,是由很多细菌联合作用的结果。甲烷细菌在合成的最后阶段起作用。它利用伴生菌所提供的代谢产物H2、CO2等合成甲烷。整个过程可分以下几个阶段: 以上几个阶段不是截然分开的,没有明显的界限,也不是孤立进行的,而是密切联系在一起互相交叉进行的。 (2)种间H2的转移作用在沼气发酵过程中,产酸菌、伴生菌发酵有机物产H2,H2又被甲烷细菌用于还原CO2合成CH4。 伴生菌和甲烷细菌在发酵过程中形成了共生关系,S-菌系分解乙醇产H2,H2对它继续分解乙醇有阻抑作用,而MOH-菌系可利用H2,这样又为S-菌系清除了阻抑,两者在一起生活互惠互利,单独存在都生活不了。 (3)由乙酸产生甲烷乙酸是有机物在厌氧发酵过程中主要中间代谢产物,也是形成甲烷的重要中间产物。McCarty实验证明,有机物发酵分解产生乙酸形成甲烷,约占甲烷总生成量的72%,由其他产物形成甲烷约占28%。由乙酸形成甲烷过程也是很复杂的,用14C示踪原子试验表明,由乙酸形成甲烷有两种途径: ①由乙酸的甲基形成甲烷 ②由乙酸转化为CO2和H2形成甲烷 § 2.沼气发酵微生物之间的生态关系 沼气发酵是一个极其复杂的生物化学过程,包括各种不同类型微生物所完成的各种代谢途径。这些微生物及其所进行的代谢都不是在孤立的环境中单独进行,而是在一个混杂的环境中相互影响。它们之间的互相作用包括有不产甲烷细菌和产甲烷细菌之间的作用;不产甲烷细菌之间的作用和甲烷细菌之间的作用。 在沼气发酵过程中,不产甲烷细菌和产甲烷细菌之间,相互依赖,互为对方创造与维持生命活动所需要的良好环境条件,但它们之间又互相制约,在发酵过程中总处于平衡状态。它们之间的主要关系表现在下列几方面: ①不产甲烷细菌为产甲烷细菌提供生长和产甲烷所需要的基质 不产甲烷细菌可把各种复杂的有机物,如碳水化合物、脂肪、蛋白质等厌氧分解生成H2、CO2、NH3、VFA、甲醇、丙酸、丁酸等,丙酸、丁酸还可被氢细菌和乙酸细菌分解转化成H2、CO2和乙酸,为甲烷细菌提供了合成细胞质和形成甲烷的碳前体,电子供体——氢供体和氮源,使甲烷细菌利用这些物质最终形成甲烷。 ②不产甲烷细菌为产甲烷细菌创造了适宜的氧化还原电位条件 在沼气发酵初期,由于加料过程中使空气带入发酵装置,液体原料里也有溶解氧,这显然对甲烷细菌是很有害的。氧的去除需要依赖不产甲烷细菌的氧化能力把氧用掉。因此,降低了氧化还原电位。在发酵装置中,各种厌氧性微生物如纤维素分解菌、硫酸盐还原细菌、硝酸盐还原细菌、产氨细菌、产乙酸细菌等,对氧化还原电位的适应性也各不相同,通过这些细菌有顺序地交替生长活动,使发酵液料中氧化还原电位不断下降,逐步为甲烷细菌的生长创造了适宜的氧化还原电位条件,使甲烷细菌能很好的生长。 ③不产甲烷细菌为产甲烷细菌清除了有害物质 以工业废水或废弃物为发酵原料时,原料里可能含酚类、氰化物、苯甲酸、长链脂肪酸和一些重金属离子等。这些物质对甲烷细菌是有毒害作用的,但不产甲烷细菌中有许多种能裂解苯环,有些细菌还能以氰化物作碳源和能源,也有的细菌能分解长链脂肪酸生成乙酸。这些作用不仅解除了对甲烷细菌的毒害,而且又给甲烷细菌提供了养料。此外有些不产甲烷细菌的代谢产物硫化氢,可以和一些重金属离子作用,生成不溶性的金属硫化物,从而解除了一些重金属离子的毒害作用。 H2S+Cu2+→CuS↓+2H+ H2S+pH2+→PbS↓+2H+ H2S浓度也不能过高,当H2S大于150×10-6,对甲烷细菌也有毒害。 ④产甲烷细菌又为不产甲烷细菌的生化反应解除了反馈抑制 不产甲烷细菌的发酵产物可以抑制产氢细菌的继续产氢,酸的积累可以抑制产酸细菌的继续产酸。当厌氧消化器中乙酸浓度超过3×10-3时,就会产生酸化,使厌氧消化不能很好的进行下去,会使沼气发酵失败。要维持良好的厌氧消化效果,乙酸浓度在0.3×10-3左右较好。在正常沼气发酵工程系统中,产甲烷细菌能连续不断地利用不产甲烷细菌产生的氢、乙酸、CO2等合成甲烷,不致有氢和酸的积累,因此解除了不产甲烷细菌产生的反馈抑制,使不产甲烷细菌就能继续正常生活,又为甲烷细菌提供了合成甲烷的碳前体。 ⑤不产甲烷细菌和产甲烷细菌共同维持环境中适宜的pH值 在沼气发酵初期,不产甲烷细菌首先降解原料中的糖类、淀粉等产生大量的有机酸、CO2,CO2又能部分溶于水形成碳酸,使发酵液料中pH值明显下降。但是不产甲烷细菌类群中还有一类细菌叫氨化细菌,能迅速分解蛋白质产生氨,氨可中和部分酸。 沼气发酵可分为三个温度范围,46~60℃称高温发酵,25~45℃称中温发酵,25℃以下称低温发酵。此外随自然界温度变化而变化的发酵方式称为常温发酵。 高温发酵的产气率比中温发酵高,但要维持消化器的高温运行能耗较大,所以从净能产量来看高温发酵并不合算。就目前实际应用情况看,一是用于有余热或废热可利用的单位,如我国酒精废醪的沼气发酵多采用高温。而是用于需要杀灭有害生物的废物处理,如人粪的高温厌氧消化。通常高温发酵的最适宜温度为55℃左右。 中温发酵的最适宜温度为35℃左右。在40~45℃对中温或高温发酵来说均属于效率较低的范围。试验显示,如果发酵温度从35℃降为25℃时,任能获得35℃时产气量的85%;当降至15℃时,也还有63%的沼气产生。在我国绝大部分地区,如果要是沼气发酵常年稳定运行,必须采取增温保温措施,使发酵温度不随气温变化,以保持恒定、充足的产气量。 我国广大农村的家用沼气池,多采用常温发酵,其池温的变化直接受地温影响。试验表明,当池温在10℃以下时,沼气发酵不能较好的进行。因此,在低温寒地区或气温下降时必须考虑家用沼气池的保温。 在统一温度类型条件下,温度发生波动时会给发酵带来一定的影响。在恒温发酵时,1h内的温度波动不易超过±(2~3)℃。短期内温度升降5℃,沼气产量会明显下降,甚至会停止产气。然而,温度波动不会使厌氧消化系统受到不可逆转的破坏,即温度瞬间波动对发酵的不利影响只是暂时性的,温度已经恢复正常,发酵的效率也随之恢复。当温度波动时间较长时,效率的恢复所需时间也相应延长。 |
随便看 |
百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。