请输入您要查询的百科知识:

 

词条 楞次定律
释义

§ 简介

楞次定律

楞次定律的内容为:因为磁通量的改变而产生的感应电流的方向,总是在阻碍磁通量的改变。只使用法拉第电磁感应定律,决定感应电流的方向并不容易。楞次定律给出了一种既简单又直观,能够决定感应电动势方向的方法。

在一支环圈的旁边有一块永久磁铁,其北极比较接近环圈。假若,将磁铁往环圈方向推进,则通过环圈的磁通量会增加。根据楞次定律,从磁铁往环圈看,感应电流会呈反时针方向。这是因为感应电流所产生的磁场的方向跟永久磁铁的磁场的方向相反,感应电流所产生的磁场试着减小永久磁铁的磁场。这样,由于磁铁的移动而增加的磁通量,也会被感应电流所产生的磁通量减小。

反之,假若,将磁铁往反方向拉离环圈,则通过环圈的磁通量会减低。根据楞次定律,从磁铁往环圈看,感应电流应该呈顺时针方向。这是因为感应电流所产生的磁场的方向跟永久磁铁的磁场的方向相同,感应电流所产生的磁场试着加大永久磁铁的磁场。这样,由于磁铁的移动而减低的磁通量,也会被感应电流所产生的磁通量加大。

另外有一种改变磁通量的方法:改使用电磁铁,固定电磁铁的位置,但是增加电磁铁的磁场。在增加磁场的时候,由于磁通量增加,根据楞次定律,从磁铁往环圈看,感应电流会呈反时针方向。这是因为感应电流所产生的磁场的方向跟电磁铁的磁场的方向相反,感应电流所产生的磁场试着减小电磁铁的磁场。这样,由于磁铁的移动而增加的磁通量,也会被感应电流所产生的磁通量减小。反之,假设减低电磁铁的磁场。则通过环圈的磁通量会减低。根据楞次定律,从磁铁往环圈看,感应电流会呈顺时针方向。

还有一种改变磁通量的方法:增加环圈的环绕面积。在这动作的同时,磁通量会增加,根据楞次定律,从磁铁往环圈看,感应电流会呈反时针方向。反之,假设减低环圈的面积则通过环圈的磁通量会减低。根据楞次定律,从磁铁往环圈看,感应电流会呈顺时针方向。

上述这些现像都建立于北极比较接近环圈的前提,假若,南极比较接近环圈,则磁场会呈现相反的方向,感应电流也会呈现相反的方向。

§ 表述及特点

楞次定律图解

楞(lèng)次定律的表述可归结为:“感应电流的效果总是反抗引起它的原因。” 如果回路上的感应电流是由穿过该回路的磁通的变化引起的,那么楞次定律可具休表述为:“感应电流在回路中产生的磁通总是反抗(或阻碍)原磁通的变化。”我们称这个表述为通量表述,这里感应电流的“效果”是在回路中产生了磁通;而产生感应电流的原因则是“原磁通的变化”。可以用四个字来形象记忆“来阻去留”。

如果感应电流是由组成回路的导体作切割磁感线运动而产生的,那么楞次定律可具体表述为:“运动导体上的感应电流受的磁场力(安培力)总是反抗(或阻碍)导体的运动。”我们不妨称这个表述为力表述,这里感应电流的“效果”是受到磁场力;而产生感应电流的“原因”是导体作切割磁感线的运动。

从楞次定律的上述表述可见,楞次定律并没有直接指出感应电流的方向,它只是概括了确定感应电流方向的原则,给出了确定感应电流的程序。要真正掌握它,必须要求对表述的涵义有正确的理解,并熟练掌握电流的磁场及电流在磁场中受力的规律。

以“通量表述”为例,要点是感应电流的磁通反抗引起感应电流的原磁通的变化,而不是反抗原磁通。如果原磁通是增加的,那么感应电流的磁通要反抗原磁通的增加,就一定与原磁通的方向相反;如果原磁通减少,那么感应电流的磁通要反抗原磁通的减少,就一定与原磁通的方向相同。在正确领会定律的上述涵义以后,就可按以下程序应用楞次定律判断感应电流的方向:a.穿过回路的原磁通的方向,以及它是增加还是减少;b.根据楞次定律表述的上述涵义确定回路中感应电流在该回路中产生的磁通的方向;c.根据回路电流在回路内部产生磁场的方向的规律(右手螺旋法则),由感应电流的磁通的方向确定感应电流的方向。

以力表述为例,其要点是感应电流在磁场中受的安培力的方向,总是与导体运动的方向成钝角,从而阻碍导体的运动.因此应用它来确定感应电流的程序是:a.明确磁场B 的方向和导体运动的方向;b.根据楞次定律的上述涵意明确感应电流受安培力的方向;c.根据安培力的规律确定感应电流的方向。

可见正确掌握楞次定律并能应用,不仅要求准确理解其涵义,还必须掌握好电流的磁场和电流在磁场中受力(安培力)的规律。

在楞次于1834年发表楞次定律时无磁通这一概念(磁通概念是法拉第于1846年才提出来的),因此定律不可能具有现在的表述形式。楞次是在综合法拉第电磁感应原理(发电机原理)和安培力原理的基础上,以“电动机发电机原理”的形式提出这个定律的。其基本思想是:用电动机原理代替发电机原理来确定感应电流的方向,即:导线回路在磁场中运动时,产生感应电流(即发电机的电流)的方向,与通电导体回路在磁场力作用下作相同运动时、应通过的电流(电动机电流)的方向相反.以两个端面互相平行的线圈为例,使A 线圈固定,B 线圈可移动.若令A线圈通以电流,让B线圈向A运动,则B线圈上将产生感应电流。用“电动机发电机原理”判断此感应电流的方向的程序如下:假定B作为电动机线圈,通电后受A线圈电流磁场的作用力而向着A运动(电动机),根据安培力规律(或电动机原理),要求B线圈的电流应与A线圈的电流有相同的绕行方向。于是根据楞次的“电动机发电机原理”所求B线圈上的感应电流的绕行方向与A线圈上电流的绕行方向相反。

楞次本人对定律的叙述似乎直接涉及到感应电流的方向。但要作出判断仍然必须通过“对作相同运动的电动机的电流”方向作出判断之后,才能确定由导线在磁场中运动产生的感应电流的方向,故实际上仍然只是给出了确定感应电流方向的原则,必须在对电动机原理有充分掌握的基础上,按一定的程序确定感应电流的方向。

§ 实质

楞次定律

楞次定律可以有不同的表述方式,但各种表述的实质相同,楞次定律的实质是:产生感应电流的过程必须遵守能量守恒定律,如果感应电流的方向违背楞次定律规定的原则,那么永动机就是可以制成的。下面分别就三种情况进行说明:

(1)如果感应电流在回路中产生的磁通量加强引起感应电流的原磁通变化,那么,一经出现感应电流,引起感应电流的磁通变化将得到加强,于是感应电流进一步增加,磁通变化也进一步加强……感应电流在如此循环过程中不断增加直至无限。这样,便可从最初磁通微小的变化中(并在这种变化停止以后)得到无限大的感应电流。这显然是违反能量守恒定律的。楞次定律指出这是不可能的,感应电流的磁通必须反抗引起它的磁通变化,感应电流具有的以及消耗的能量,必须从引起磁通变化的外界获取。要在回路中维持一定的感应电流,外界必须消耗一定的能量。如果磁通的变化是由外磁场的变化引起的,那么,要抵消从无到有地建立感应电流的过程中感应电流在回路中的磁通,以保持回路中有一定的磁通变化率,产生外磁场的励磁电流就必须不断增加与之相应的能量,这只能从外界不断地补充。

(2)如果由组成回路的导体作切割磁感线运动而产生的感应电流在磁场中受的力(安培力)的方向与运动方向相同,那么,感应电流受的磁场力就会加快导体切割磁感线的运动,从而又增大感应电流。如此循环,导体的运动将不断加速,动能不断增大,电流的能量和在电路中损耗的焦耳热都不断增大,却不需外界做功,这显然是违背能量守恒定律的。楞次定律指出这是不可能的,感应电流受的安培力必须阻碍导体的运动,因此要维持导体以一定速度作切割磁感线运动,在回路中产生一定的感应电流,外界必然反抗作用于感应电流的安培力做功。

(3)如果发电机转子绕组上的感应电流的方向,与作同样转动的电动机转子绕组上的电流方向相同,那么发电机转子绕组一经转动,产生的感应电流立即成了电动机电流,绕组将加速转动,结果感应电流进一步加强,转动进一步加速。如此循环,这个机器既是发电机,可输出越来越大的电能,又是电动机,可以对外做功,而不花任何代价(除使转子最初的一动而外),这显然是破坏能量守恒定律的永动机。楞次定律指出这是不可能的,发电机转子上的感应电流的方向应与转子作同样运动的电机电流的方向相反。

综上所述,楞次定律的任何表述,都是与能量守恒定律相一致的。概括各种表述“感应电流的效果总是反抗产生感应电流的原因”,其实质就是产生感应电流的过程必须遵守能量守恒定律。

§ 难点

楞次定律

从静到动的一个飞跃

学习“楞次定律”之前所学的“电场”和“磁场”只是局限于“静态场”考虑,而“楞次定律”所涉及的是变化的磁场与感应电流的磁场之间的相互关系,是一种“动态场”,并且“静到动”是一个大的飞跃。

内容、关系的复杂性

“楞次定律”涉及的物理量多,关系复杂。产生感应电流的原磁场与感应电流的磁场两者都处于同一线圈中,且感应电流的磁场总要阻碍原磁场的变化,它们之间既相互依赖又相互排斥。如果不明确指出各物理量之间的关系,使学生有一个清晰的思路,势必造成学生思路混乱,影响学生对该定律的理解。

学生知识、能力的不足

要能理解“楞次定律”必须具备一定的思维能力,而大多数学生抽象思维和空间想象能力还不是很强,对物理知识的理解、判断、分析、推理常常表现出一定的主观性、片面性和表面性,所以在某些问题的理解上容易出差错。

§ 突破难点的方法

楞次定律

正确理解“楞次定律”及“阻碍”的含义

(1)“楞次定律”的内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通的变化。

(2)对“阻碍”二字的理解:要正确全面地理解“楞次定律”必须从“阻碍”二字上下功夫,这里起阻碍作用的是“感应电流的磁场”,它阻碍“原磁通量的变化”,不是阻碍原磁场,也不是阻碍原磁通量。不能认为“感应电流的磁场必然与原磁场方向相反”或“感应电流的方向必然和原来电流的流向相反”。所以“楞次定律”可理解为:当穿过闭合回路的磁通量增加时,相应感应电流(‘增加的磁通量’所感应的电流)的磁场方向总是与原磁场方向相反;当穿过闭合回路的磁通量减小时,相应感应电流(‘减小的磁通量’所感应的电流)的磁场方向总是与原磁场方向相同。另外“阻碍”不能理解为“阻止”,应认识到,原磁场是主动的,感应电流的磁场是被动的,原磁通量仍然要发生变化,阻止不了,而感应电流的磁场只是起阻碍作用而已。感应电流的磁场的存在只是削弱了穿过电路的总磁通量 变化的快慢,而不会改变 的变化特征和方向。例如:当增大感应电流的磁场时, 原磁场也将在原方向上一直增大,只是增大得比没有感应电流的磁场时慢一点而已。如果磁通量变化被阻止,则感应电流就不会继续产生。无感应电流,就更谈不上“阻止”了。

应用“楞次定律”判定感应电流方向的步骤

(1)明确原磁场的方向及磁通量的变化情况(增加或减少)。

(2)确定感应电流的磁场方向,依“增反减同”确定。

(3)用安培定则确定感应电流的方向。

弄清最基本的因果关系

“楞次定律”所揭示的这一因果关系。感应磁场与原磁场磁通量变化之间阻碍与被阻碍的关系:原磁场磁通量的变化是因,感应电流的产生是果,原因引起结果,结果又反作用于原因,二者在其发展过程中相互作用,互为因果。

正确认识“楞次定律”与能量转化的关系

“楞次定律”是能量转化和守恒定律在电磁运动中的体现,符合能量守恒定律,感应电流的磁场阻碍引起感应电流的原磁场的磁通量的变化,因此,为了维持原磁场磁通量的变化,就必须有动力作用,这种动力克服感应电流的磁场的阻碍作用做功,将其他形式的能转变为感应电流的电能,所以“楞次定律”中的阻碍过程,实质上就是能量转化的过程。

多角度理解“楞次定律”

从反抗效果的角度来理解:感应电流的效果,总是要反抗产生感应电流的原因,这是“楞次定律”的另一种表述。依这一表述,“楞次定律”可推广为:

①阻碍原磁通量的变化。

②阻碍(导体的)相对运动(由导体相对磁场运动引起感应电流的情况)。可以理解为“来者拒,去者留”。

与之相关的解题方法

电流元法:在整个导体上去几段电流元,判断电流元受力情况,从而判断导体受力情况等效磁体法:将导体等效为一个条形磁铁,进而作出判断躲闪法:“增反减同”的方法确定。阻碍相对运动法:产生的感应电流总是阻碍导体相对运动。 [1]

§ 注意的问题

楞次定律

1.“阻碍”等于“阻止”吗?

阻碍不是阻止。因为磁通量的变化是引起感应电流的必要条件,如果这种变化被阻止了,也就不可能继续产生感应电流了。其实,原磁场的变化是由外界的各种因素决定的,如电流的变化,相对位置的变化等,而与感应电流无关。当原磁场减弱时,感应电流产生的磁场也只能对原磁场起补充作用,而穿过闭合回路的磁通量却仍然是减少的。

2.“阻碍”就是“相反”吗?

阻碍也不是相反。如果将阻碍理解为感应电流的磁场总是与原磁场方向相反,则楞次定律就违背了电磁感应现象也必须符合能量的守恒与转化定律这个自然界的普适守恒定律了。当原磁场增强时,这种“阻碍”表现为感应电流产生的磁场方向与原磁场方向相反;当原磁场减弱时,这种“阻碍”则表现为感应电流产生的磁场方向与原磁场方向相同。上述现象可用“增反减同”四个字来概括。

3.“阻碍”什么?

感应电流阻碍的对象是原磁场磁通量的变化,而不是阻碍原磁场的磁感应强度或原磁场的磁通量。阻碍的作用是使原磁场的磁通量变化变的缓慢一些。

4.楞次定律与右手定则的关系是什么?

楞次定律与右手定则是一般与特殊的关系。一切电磁感应现象都符合楞次定律,而右手定则只适用于单纯由于部分导体做切割磁感线所产生的电磁感应现象。对于由磁感应强度B随时间变化所产生的电磁感应现象,只能由楞次定律进行分析。对于单纯是导体做切割磁感线所产生的电磁感应现象,既可运用右手定则判断,也可运用楞次定律判断,一般情况下,运用右手定则判断会更方便一些。

5.楞次定律的等价表述是什么?

楞次定律还有另一种等价的表述,即感应电流所产生的效果,总要反抗产生感应电流的原因。这里的原因可以是原磁通量的变化,也可以是引起磁通量变化的机械效应(如相对运动或使回路发生形变等);感应电流的效果,既可以是感应电流所产生的磁场,也可以是因为感应电流而导致的机械作用(如安培力等)。对于不需要判断感应电流方向,只需要判定由于电磁感应现象所产生的机械作用的问题,运用楞次定律的这一种表述进行判断通常比较简便。这时也可简化为“来拒去留”来判断。

6.楞次定律的实质是什么?

楞次定律是能量的转化和守恒定律在电磁感应现象中的具体表现。感应电流的磁场阻碍过程,使机械能减少,转化为电能。只有符合楞次定律的感应电流所产生的效果,才符合能量转化和守恒定律。反之,就违反了能量的转化和守恒定律。

7.研究对象应如何选择?

在应用楞次定律判断电路中感应电流的方向时,研究对象的选取是十分重要的。必须明确,楞次定律的研究对象是闭合电路,在判断不闭合电路中的感应电动势方向时,可以假设电路闭合,按照楞次定律先判断出假设的闭合电路中的感应电流方向,进而判断出感应电动势的方向。当题设中的闭合电路不止一个时,必须根据题意及分析的实际需要恰当而准确地选择研究对象,确定闭合电路所包围的具体区域。倘若研究对象的选择方案不唯一,应选择便于判断、分析简便的闭合电路。

§ 与能量守恒定律

楞次定律

楞次定律在本质上就是能量守恒定律。在电磁感应现象中,感应电流在闭合电路中流动时将电能转化为内能,根据能量守恒定律,能量不能无中生有,这部分能量只能从其他形式的能量转化而来。例如,当条形磁铁从闭合线圈中插进与拔出的过程中,按照楞次定律,把磁铁插入线圈或从线圈中拔出,都必须克服磁场的斥力或引力做功。实际上,正是这一过程消耗机械能转化为电能再转化为内能。

假设感应电流的效果不是反抗引起感应电流的原因,那么,在上例中,只需把条形磁铁稍稍推动一下,感应电流产生的磁场将吸引它,使它动得更快些,于是更增大了感应电流,使线圈吸引条形磁铁的力更大,条形磁铁将做更快的运动,如此不断反复加强,只需在最初阶段条形磁铁作微小移动中做微量的功就能获得无限增大的机械能和电能,这显然是违背能量守恒定律的。

感应电流的方向遵循楞次定律的事实本身就说明了楞次定律的本质就是能量守恒定律,或者说,楞次定律是能量守恒定律在电磁感应现象中的具体表现。

熟练掌握楞次定律与安培定则、左手定则、右手定则的综合使用

1.熟知安培定则、左手定则、右手定则、楞次定律应用于不同现象中。

A.判断运动电荷、电流产生磁场应用安培定则(用右手)

B.判断磁场对运动电荷、电流作用力时应用左手定则

C.判断电磁感应现象中部分导体切割磁感线运动产生感应电动势应用右手定则,闭合回路磁通量变化产生感应电动势应用楞次定律。

2.巧记右手定则与左手定则的区别:抓住“因果关系”才能无误,“因动而电”──用右手;“因电而动”──用左手。

3.正确区分涉及的两个磁场(一是引起感应电流的磁场;二是感应电流产生的磁场),是应用楞次定律的关键。理解两个磁场的“阻碍”关系——“阻碍”的原磁场磁通量的“变化”。 [2]

随便看

 

百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/9/21 19:08:47