词条 | 梅氏定理 |
释义 | § 梅氏定理 梅涅劳斯(Menelaus)定理:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。 或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1 。其逆定理也成立,即:若有三点F、D、E分别在的边AB、BC、CA或其延长线上,且满足AF/FB×BD/DC×CE/EA=1,则F、D、E三点共线。使用梅涅劳斯定理可以进行直线形中线段长度比例的计算,其逆定理还是可以用来解决三点共线、三线共点等问题的判定方法,是平面几何学以及射影几何学中的一项基本定理,具有重要的作用。梅涅劳斯定理的对偶定理是塞瓦定理。 § 定理证明 证明一 过点A作AG∥BC交DF的延长线于G, 则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG。 三式相乘得:(AF/FB)×(BD/DC)×(CE/EA)=(AG/BD)×(BD/DC)×(DC/AG)=1 证明二 过点C作CP∥DF交AB于P,则BD/DC=FB/PF,CE/EA=PF/AF 所以有AF/FB×BD/DC×CE/EA=AF/FB×FB/PF×PF/AF=1 § 逆定理证明 证明一 过ABC三点向三边引垂线AA'BB'CC', 所以AD:DB=AA':BB',BE:EC=BB':CC',CF:FA=CC':AA' 所以(AF/FB)×(BD/DC)×(CE/EA)=1 证明二 连接BF。 (AD:DB)·(BE:EC)·(CF:FA) =(S△ADF:S△BDF)·(S△BEF:S△CEF)·(S△BCF:S△BAF) =(S△ADF:S△BDF)·(S△BDF:S△CDF)·(S△CDF:S△ADF) =1 此外,用定比分点定义该定理可使其容易理解和记忆: 在△ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是λ=BL/LC、μ=CM/MA、ν=AN/NB。于是L、M、N三点共线的充要条件是λμν=1。 § 其他相关领域 文化 科技 人文 烹饪 钓鱼 休闲 娱乐 计算机 网络 军事 国防 |
随便看 |
百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。