请输入您要查询的百科知识:

 

词条 棣莫弗定理
释义

§ 棣莫弗定理

设两个复数(用三角形式表示)Z1=r1(cosθ1+isinθ1) ,Z2=r2(cosθ2+isinθ2),则:

Z1Z2=r1r2【cos(θ1+θ2)+isin(θ1+θ2)】.

证:先讲一下复数的三角形式的概念.在复数平面上,可以用向量Z(a,b)来表示Z=a+ib.于是,该向量可以分成两个在实轴,虚轴上的分向量.如果向量Z与实轴的夹角为θ,这两个分向量的模分别等于rcosθ,risinθ(r=√a^2+b^2).所以,复数Z可以表示为Z=r(cosθ+isinθ).这里θ称为复数Z的辐角.

因为Z1=r1(cosθ1+isinθ1) ,Z2=r2(cosθ2+isinθ2),所以

Z1Z2=r1r2(cosθ1+isinθ1)(cosθ2+isinθ2)

=r1r2(cosθ1cosθ2+icosθ1sinθ2+isinθ1cosθ2-sinθ1sinθ2)

=r1r2【(cosθ1cosθ2-sinθ1sinθ2)+i(cosθ1sinθ2+sinθ1cosθ2)】

=r1r2【cos(θ1+θ2)+isin(θ1+θ2)】.

其实该定理可以推广为一般形式:

§ 棣莫弗定理的推广

设n个复数Z1=r1(cosθ1+isinθ1) ,Z2=r2(cosθ2+isinθ2),……,Zn=rn(cosθn+isinθn), 则:

Z1Z2……Zn=r1r2……rn【cos(θ1+θ2+……+θn)+isin(θ1+θ2+……+θn)】.

证:用初等数学的知识已经不好来证明这个定理推广,需要运用欧拉公式“e^iθ=cosθ+isinθ”(详见我的词条《泰勒公式》)给予证明.把所有的复数改写成幂指数的形式,即:Z1=r1e^iθ1,Z2=r2e^iθ2,……,Zn=rne^iθn, 所以有:

Z1Z2……Zn=r1r2……rne^i(θ1+θ2+……+θn).再把这个指数形式改写成三角形式就可得到:

Z1Z2……Zn=r1r2……rn【cos(θ1+θ2+……+θn)+isin(θ1+θ2+……+θn)】.

在一般形式中如果令Z1=Z2=……=Zn=Z,则能导出复数开方的公式.有兴趣可自己推推看.    

随便看

 

百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/11/11 10:14:35