词条 | 无损检测 |
释义 | § 概述 无损检测,是用非破坏方法检查材料、毛坯和零件的内部或表面缺陷并评价其整体质量的技术,又称无损探伤。它的英文名称是Nondestructive Testing,简称为NDT。通过使用NDT,能发现材料或工件内部和表面所存在的缺欠,能测量工件的几何特征和尺寸,能测定材料或工件的内部组成、结构、物理性能和状态等。 NDT 能应用于产品设计、材料选择、加工制造、成品检验、在役检查(维修保养)等多方面,在质量控制与降低成本之间能起最优化作用。NDT 还有助于保证产品的安全运行和(或)有效使用。由于各种 NDT 方法,都各有其适用范围和局限性,因此新的 NDT 方法一直在不断地被开发和应用。通常,只要符合 NDT 的基本定义,任何一种物理的、化学的或其他可能的技术手段,都可能被开发成一种 NDT 方法。 在我国,无损检测一词最早被称之为探伤或无损探伤,其不同的方法也同样被称之为探伤,如射线探伤、超声波探伤、磁粉探伤、渗透探伤等等。这一称法或写法广为流传,并一直沿用至今,其使用率并不亚于无损检测一词。在国外,无损检测一词相对应的英文词,除了该词的前半部分——即 non-destructive 的写法大多相同外,其后半部分的写法就各异了。如日本习惯写作 inspection,欧洲不少国家过去曾写作 flaw detection、现在则统一使用testing,美国除了也使用 testing 外,似乎更喜欢写作 examination 和 evaluation。这些词与前半部分结合后,形成的缩略语则分别是 NDI、NDT 和 NDE,翻译成中文就出现了无损探伤、无损检查(非破坏检查)、无损检验、无损检测、无损评价等不同术语形式和写法。实际上,这些不同的英文及其相应的中文术语,它们具有的意义相同,都是同义词。为此,国际标准化组织无损检测技术委员会(ISO/TC 135)制定并发布了一项新的国际标准(ISO/TS 18173:2005),旨在将这些不同形式和写法的术语统一起来,明确它们是有一个相同定义的术语、都是同义词,即等同于无损检测(non-destryctive testing)。而不同的写法,仅仅是由于语言习惯不同而已。[1] § 分类 目前用于无损检测的方法很多。除了5种常规(射线、超声、磁粉、渗透和涡流)方法外,还有红外、激光、声发射、微波,工业CT等。下面是一些常见的无损检测的方法:X射线无损检测仪 1、射线探伤(radiographictesting)。利用X射线或γ射线在穿透被检物各部分时强度衰减的不同,检测被检物的缺陷。若将受到不同程度吸收的射线投射到X射线胶片上,经显影后可得到显示物体厚度变化和内部缺陷情况的照片。如用荧光屏代替胶片,可直接观察被检物体的内部情况。 2、超声波检测仪器 超声检测(ultrasonictesting)。利用物体自身或缺陷的声学特性对超声波传播的影响,来检测物体的缺陷或某些物理特性。在超声检测中常用的超声频率为0.5~5兆赫(MHz)。最常用的超声检测是脉冲探伤。 3、声发射检测(acousticemissiontesting)。通过接收和分析材料的声发射信号来评定材料的性能或结构完整性。材料中因裂缝扩展、塑性变形或相变等引起应变能快速释放而产生应力波的现象称为声发射。材料在外部因素作用下产生的声发射,被声传感器接收转换成电信号,经放大后送至信号处理器,从而测量出声发射信号的各种特征参数。 4、渗透探伤(penetranttesting)。利用某些液体对狭窄缝隙的渗透性来探测表面缺陷。常用的渗透液为含有有色染料或荧光的液体。渗透探伤剂 5、B310磁粉探伤仪 磁粉探伤(magnetictesting)。通过磁粉在物体缺陷附近漏磁场中的堆积来检测物体表面或近表面处的缺陷,被检测物体必须具有铁磁性。 § 发展历史 航空航天材料和工艺的发展与无损检测有密切的关系。20世纪30年代初磁粉探伤用以检验航空钢零件。1935年,X射线开始用于检查飞机木质螺旋桨。在第二次世界大战期间,飞机已经大量使用铝合金和镁合金,为了检查这些非铁磁性材料的表面缺陷,开始使用荧光渗透检验法。无损检测脱粘缺陷 后来,超音速飞机和空间技术迅速发展,大量新材料用于飞行器,促进了激光全息、红外线、声发射等新的无损检测技术。用激光全息照相法检查蜂窝结构件和胶接结构件时从全息图中很容易发现脱粘缺陷(见图)。在航天工业中,用声发射技术逐片检查隔热陶瓷瓦,保证了航天飞机的试飞成功。现代航空器和航天器失事,有些就出于材料和工艺的原因。飞行安全问题引起人们越来越大的关注,因而无损检测技术在70年代末得到了很大的发展。飞行器的设计较多地选用高强度和高温高强度材料。这类材料通常断裂韧性(抗裂纹扩展能力)较低,允许的缺陷尺寸很小,因此要求探伤有极高的灵敏度和分辨率。飞机大梁磁粉探伤须使用高灵敏度规范,涡轮轴荧光检查则须使用超高灵敏度的荧光渗透液。为了检查铸造空心叶片的显微疏松,已有微米级焦点X射线探伤机。由于材料制造工艺的改进,宏观缺陷已逐渐减少,而微观缺陷的危害则相应突出。超声衰减和超声显微镜等新技术,已开始试用于检查粉末冶金涡轮盘中原始颗粒边界处的微小氧化物。 § 用途 无损检测技术已广泛应用于冶金、机械工业中。目前,无损检测用得最多的是检测材料、铸锻件和焊缝的缺陷,也就是说目前无损检测用得最多的是无损探伤。无损检查缺陷(无损探伤)大致可以分为两种情况:一种是在制造加工时进行检查,另一种是在使用过程中定期检查。这些检查可以用来进行质量评定和寿命评定。 无损检测技术,是要以检查出的缺陷情况为依据来预测缺陷的发展,所以要求尽量准确地检测出缺陷的种类、形状、大小、位置和方向,以便进行寿命评定和质量评定。具体来说,无损检测的作用有一下几点: 1、确保工件或设备质量,保证设备安全运行。用无损检测保证产品质量,使之在规定的使用条件下,在预期的使用寿命内,产品的部分或者整体都不会发生破损,从而防止设备和人员事故。 2、改进制造工艺。我们可以先根据预定的制造工艺制作试样或试制品,对其进行无损检测,用无损检测来观察制造样品的工艺是否合适,这样一边观察一边改进工艺,直到最后确定满足质量要求的制造工艺。 3、降低制造成本。通过无损检测可以达到降低制造成本的目的。在产品制造过程中适当而正确地进行无损检测,就能防止工件在最后加工完了又报废而白白浪费工时,从而降低了制造成本。 § 注意事项 1、无损检测要与破坏性检测相互配合。无损检测最大的特点就是在不损伤材料、工件和机器结构的前提下进行检测。但是无损检测不能代替破坏性检测,两者必须相互结合进行。 2、正确选择实施无损检测的时间。例如,要检查高强钢焊缝有无延迟裂缝,无损检测实施的时间,应安排在焊接后一昼夜以后进行。 3、正确选择最适当的无损检测方法。没有无损检测都有自己的特点,在实际检测中要根据被检测对象的实际情况来选择检测方法。 4、综合应用各种无损检测方法。综合应用各种方法可以弥补一些方法的不足,全面而正确的评价材料、工件等。 |
随便看 |
百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。