词条 | 文氏图 |
释义 | § 例子 比如橙色的圆圈(集合 A)可以表示两足的所有活物。蓝色的圆圈(集合 B)可以表示会飞的所有活物。橙色和蓝色的圆圈交叠的区域(叫做交集)包含会飞且两足的所有活物 - 比如鹦鹉。(把每个单独的活物类型想象为在这个图中的某个点)。人和企鹅可以在橙色圆圈中不与蓝色圆圈交叠的部分中。蚊子有六足并且会飞,所以蚊子的点可以在蓝色圆圈中不与橙色圆圈交叠的部分中。不是两足并且不会飞的东西(比如 文氏图 鲸和响尾蛇)可以表示为在这两个圆圈之外的点。在技术上,上面的文氏图可以解释为 "集合 A 和集合 B 之间的联系,它们可以有一些(但不是全部)元素是公共的"。 集合 A 和 B 的组合区域叫做集合 A 和 B 的并集。在这个个例中并集包含要么两足、要么会飞、要么两足并且会飞的所有东西。圆圈交叠暗示着两个集合的交集非空 - 就是说在事实上有活物同时在橙色和蓝色圆圈中。有时在文氏图在外面绘制一个方框(叫做全集)来展示所有可能事物的空间。如上提及到的,鲸可以表示为不在并集中但在(活物或所有事物,依赖于你如何选择对特定图的全集的定义)全集中一个点。 § 类似的图 Johnston 图和欧拉图可能在外观上同文氏图是一致的。它们之间的任何区别都在它们的应用领域中,就是说在被分割的全集的类型中。Johnston 图特别适用于命题逻辑的真值,而欧拉图展示对象的特定集合,文氏图的概念更一般的适用于可能的联系。文氏图和欧拉图没有合并的原因好像是欧拉的版本是早在 100 多年前就出现了的,欧拉已经有了足够多的成就了,而 Venn 只留下了这么一个图。 在欧拉图和文氏图之间的区别只是在想法上,欧拉图要展示特定集合之间的联系,而文氏图要包含所有可能的组合。下面是欧拉图的一个例子: 集合 A、B 和 C 在这个例子中,一个集合完全在另一个集合内部。我们说集合 A 是在世界中能找到的所有的不同类型的奶酪,集合 B 是在世界中能找到的所有食物。从这个图中,你可以看出所有奶酪都是食物,但是不是所有食物都是奶酪。进一步的说,集合 C(比如说金属造物)与集合 B 没有公共元素(集合的成员),从此我们可以在逻辑上断言没有奶酪是金属造物(或者反过来说)。在形式上,上述的图可以在数学上解释为 "集合 A 是集合 B 的真子集,而集合 C 和集合 B 没有公共元素"。 或解释为一个三段论 扩展到更多个集合 作了很多努力去把文氏图推广到多个集合。Venn 使用椭圆达到了四个集合但从未满意他的五集合解法。在一个世纪之前找到了一种能满足 Venn 有关对称图的非正式标准的优雅的方法。在设计彩色玻璃窗的过程中缅怀 Venn,A. W. F. Edwards 提出了‘齿轮’方法: 三集合: image:Edwards-Venn-three.png 四集合: image:Edwards-Venn-four.png 五集合: image:Edwards-Venn-five.png 六集合: image:Edwards-Venn-six.png 引用: Ian Stewart Another Fine Math You've Got Me Into 1992 ch4。 § 起源 John Venn 是十九世纪英国的哲学家和数学家,他在 1881年发明了文氏图。 在剑桥大学的 Caius 学院的彩色玻璃窗上有对他的这个发明的纪念。 § 工具 * Microsoft Powerpoint * VennDiagrams * Winvenn |
随便看 |
百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。