词条 | 拉姆齐定理 |
释义 | § 名称 拉姆齐定理 § 简介 在组合数学上,拉姆齐(Ramsey)定理是要解决以下的问题:要找这样一个最小的数n,使得n个人中必定有k个人相识或l个人互不相识。 这个定理以弗兰克·普伦普顿·拉姆齐命名,1930年他在论文On a Problem in Formal Logic(《形式逻辑上的一个问题》)证明了R(3,3)=6。 拉姆齐数的定义 拉姆齐数,用图论的语言有两种描述: 对于所有的N顶图,包含k个顶的团或l个顶的独立集。具有这样性质的最小自然数N就称为一个拉姆齐数,记作R(k,l); 在着色理论中是这样描述的:对于完全图Kn的任意一个2边着色(e1,e2),使得Kn【e1】中含有一个k边形,Kn【e1】含有一个l边形,则称满足这个条件的最小的n为一个拉姆齐数。(注意:Ki按照图论的记法表示i阶完全图) 拉姆齐证明,对与给定的正整数数k及l,R(k,l)的答案是唯一和有限的。 拉姆齐数亦可推广到多于两个数: 对于完全图Kn的每条边都任意涂上r种颜色之一,分别记为 e1,e2,e3,...,er ,在Kn中,必定有个颜色为e1的l1边形,或有个颜色为e2的l2边形……或有个颜色为er的lr边形。符合条件又最少的数n则记为R(l1,l2,l3,...,lr;r)。 拉姆齐数的数值或上下界 已知的拉姆齐数非常少,保罗·艾狄胥曾以一个故事来描述寻找拉姆齐数的难度:“想像有队外星人军队在地球降落,要求取得R(5,5)的值,否则便会毁灭地球。在这个情况,我们应该集中所有电脑和数学家尝试去找这个数值。若它们要求的是R(6,6)的值,我们要尝试毁灭这班外星人了。” 显然易见的公式: R(1,s)=1 R(2,s)=s R(l1,l2,l3,...,lr;r)=R(l2,l1,l3,...,lr;r)=R(l3,l1,l2,...,lr;r) (将li的顺序改变并不改变拉姆齐的数值) |
随便看 |
百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。