词条 | 支持向量机 |
释义 | § 简介 支持向量机 支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力 。 § 动机 我们通常希望分类的过程是一个机器学习的过程。这些数据点是n维实空间中的点。我们希望能够把这些点通过一个n-1维的超平面分开。通常这个被称为线性分类器。有很多分类器都符合这个要求。但是我们还希望找到分类最佳的平面,即使得属于两个不同类的数据点间隔最大的那个面,该面亦称为最大间隔超平面。如果我们能够找到这个面,那么这个分类器就称为最大间隔分类器。 § 支持原因 支持向量机 支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。建立方向合适的分隔超平面使两个与之平行的超平面间的距离最大化。其假定为,平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。 § 支持向量概述 所谓支持向量是指那些在间隔区边缘的训练样本点。 这里的“机(machine,机器)”实际上是一个算法。在机器学习领域,常把一些算法看做是一个机器。 支持向量机(Support vector machines,SVM)与神经网络类似,都是学习型的机制,但与神经网络不同的是SVM使用的是数学方法和优化技术。 § 相关技术支持 支持向量机是由Vapnik领导的AT&TBell实验室研究小组在1963年提出的一种新的非常有潜力的分类技术,SVM是一种基于统计学习理论的模式识别方法,主要应用于模式识别领域。由于当时这些研究尚不十分完善,在解决模式识别问题中往往趋于保守,且数学上比较艰涩,这些研究一直没有得到充分的重视。直到90年代,统计学习理论 (Statistical Learning Theory,SLT)的实现和由于神经网络等较新兴的机器学习方法的研究遇到一些重要的困难,比如如何确定网络结构的问题、过学习与欠学习问题、局部极小点问题等,使得SVM迅速发展和完善,在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。从此迅速的发展起来,现在已经在许多领域(生物信息学,文本和手写识别等)都取得了成功的应用。 在地球物理反演当中解决非线性反演也有显著成效,例如(支持向量机在预测地下水涌水量问题等)。现在已知该算法被被应用的主要有:石油测井中利用测井资料预测地层孔隙度及粘粒含量、天气预报工作等。 支持向量机中的一大的亮点是在传统的最优化问题中提出了对偶理论,主要有最大最小对偶及拉格朗日对偶。 SVM的关键在于核函数。低维空间向量集通常难于划分,解决的方法是将它们映射到高维空间。但这个办法带来的困难就是计算复杂度的增加,而核函数正好巧妙地解决了这个问题。也就是说,只要选用适当的核函数,就可以得到高维空间的分类函数。在SVM理论中,采用不同的核函数将导致不同的SVM算法。 《网络隐蔽通道检测技术研究》 在确定了核函数之后,由于确定核函数的已知数据也存在一定的误差,考虑到推广性问题,因此引入了松弛系数以及惩罚系数两个参变量来加以校正。在确定了核函数基础上,再经过大量对比实验等将这两个系数取定,该项研究就基本完成,适合相关学科或业务内应用,且有一定能力的推广性。当然误差是绝对的,不同学科、不同专业的要求不一。[1] |
随便看 |
百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。