词条 | 微处理器 |
释义 | § 概述 微处理器微处理器是微型计算机中最关键的设备,是由超大规模集成电路(VLSI)工艺制成的芯片。它起到控制整个微型计算机工作的作用,产生控制信号对相应的设备进行控制,并执行相应的操作。[1]微处理器能完成取指令、执行指令,以及与外界存储器和逻辑部件交换信息等操作,是微型计算机的运算控制部分。它可与存储器和外围电路芯片组成微型计算机。[2] 今天,微处理器已经无处不在,无论是录像机、智能洗衣机、移动电话等家电产品,还是汽车引擎控制,以及数控机床、导弹精确制导等都要嵌入各类不同的微处理器。微处理器不仅是微型计算机的核心部件,也是各种数字化智能设备的关键部件。国际上的超高速巨型计算机、大型计算机等高端计算系统也都采用大量的通用高性能微处理器建造。 § 分类 根据微处理器的应用领域,微处理器大致可以分为三类:通用高性能微处理器、嵌入式微处理器和数字信号处理器、微控制器。一般而言,通用处理器追求高性能,它们用于运行通用软件,配备完备、复杂的操作系统;嵌入式微处理器强调处理特定应用问题的高性能,主要用于运行面向特定领域的专用程序,配备轻量级操作系统,主要用于蜂窝电话、CD播放机等消费类家电;微控制器价位相对较低,在微处理器市场上需求量最大,主要用于汽车、空调、自动机械等领域的自控设备。 CPU是Central Processing Unit(中央微处理器)的缩写,它是计算机中最重要的一个部分,由运算器和控制器组成。如果把计算机比作人,那么CPU就是人的大脑。CPU的发展非常迅速,个人电脑从8088(XT)发展到现在的Pentium 4时代,只经过了不到二十年的时间。 从生产技术来说,最初的8088集成了29000个晶体管,微处理器而PentiumⅢ的集成度超过了2810万个晶体管;CPU的运行速度,以MIPS(百万个指令每秒)为单位,8088是0.75MIPS,到高能奔腾时已超过了1000MIPS。不管什么样的CPU,其内部结构归纳起来都可以分为控制单元、逻辑单元和存储单元三大部分,这三个部分相互协调,对命令和数据进行分析、判断、运算并控制计算机各部分协调工作 CPU从最初发展至今已经有二十多年的历史了,这期间,按照其处理信息的字长,CPU可以分为:4位微处理器、8位微处理器、16位微处理器、32位微处理器以及正在酝酿构建的64位微处理器,可以说个人电脑的发展是随着CPU的发展而前进的。 § 历史 最早的芯片 正如近现代其他科技的发展一样,微处理器时代仿佛一夜之间就到来了。三个公司,三个计划,几乎不约而同地成为微处理器产业的先锋。它们就是英特尔的Intel4004,德州仪器公司的TMS1000和盖瑞特艾雷赛奇(GarrettAiResearch)工业部的CADC(CentralAirDataComputer)。 1968年盖瑞特被邀请参加研制一种数字计算机,以同正在开发中的用于美国海军F-14雄猫战斗机的主飞行控制电脑的电机系统竞争。这个以基于MOS技术的芯片组为核心的CPU于1970年设计完成,并以更小的体积和更高的可靠性打败了基于电机系统的设计,被运用于早期的所有雄猫战斗机。但今天看来,知道CADC和MP944芯片组的人并不多,主要原因在于美国海军认为这种技术太过先进而不允许将其设计细节公开,这种情况一直持续到1997年。微处理器德州仪器公司开发出以预编程嵌入式应用(pre-programmedembeddedapplications)为主打技术的4位微处理器TMS1000,并于1971年9月17日推出代号为TMS1802NC的市场版本,用于生产单芯片计算器。英特尔的4004计划则由弗得里克·法金(FedericoFaggin)主持开发,并于1971年11月15日发布。 德州仪器为微处理器申请了专利。1973年9月4日GaryBoone获得了单片微处理器的美国专利,专利号是3757306。但是我们可能无法确定究竟哪家公司第一个在实验室做出了微处理器。1971年和1976年英特尔和德州仪器两次达成专利互许可协议,根据协议,英特尔向德州仪器付微处理器专利的使用费。Cyrix曾经同英特尔为微处理器专利对簿公堂。 有趣的是,有第三方人士声称拥有可以涵盖“微处理器”的专利。具体请参见这个网站,根据这里的描述,有人早于德州仪器和英特尔就发明了“微控制器”,这算不算“微处理器”尚有争议。 所谓的单片机是微处理机的一种变体,它包括了CPU,一些内存以及I/O接口,所有都集成在一块集成电路上。单片机的专利号为4074351,授予了德州仪器的GaryBoone和MichaelJ.Cochran。当时他们是以微计算机的名称申请专利的。 根据麻省理工出版的《现代计算史》第200页到221页,英特尔同圣安东尼奥的一家叫做计算机终端的公司(后改名为数点公司)签署了一份合同,合作设计一块用于终端的芯片。数点后来决定不用这块芯片了,英特尔就将其命名为8008,并于1972年4月上市销售。这是世界上第一块8位微处理器,也是后来《无线电电子》杂志卖的著名的马克-8计算机的主要部件。8008及其后继产品8080开创了微处理器的市场。 8位 紧随4位的4004之后,英特尔设计出世界上第一片8位微处理器,Intel8008。此后,在市场运作中非常成功的Intel8080和Zilog公司的Z80以及一系列其他8位微处理器又相继推出。原先在摩托罗拉公司设计Motorola6800的一群人离开公司,另组建了MOSTechnology公司并在6800的技术基础上推出改良产品6502,藉此与Z80在20世纪80年代的微处理器市场上相庭抗礼。 Z80和6502芯片的设计目标都是要减少整个系统的成本,为此开发者使用了缩小规模,简化总线,合并专用芯片(比如Z80就包含了一个内存控制器等方法。这些措施导致了1980年代早期家用电脑的“革命”:消费者用99美元的价格就能买到一台半可用的电脑了。 摩托罗拉推出了MC6809,成为8位处理器市场的领头羊。有人认为这是有史以来功能最强大的纯8位处理器-也是所有投产的硬布线处理器中最复杂的。比MC6809更先进的处理器后来都用了微代码技术。这是因为硬布线逻辑无法满足越来越复杂的设计,逐步被淘汰了。 另一种早期的8位处理器是Signetics2650。由于其指令集架构新颖而功能强大,这种芯片风靡一时。 RCA公司生产的CDP1802,即RCACOSMAC,是应用于航天的处理器的先锋。1970年代,NASA的旅行者号和海盗号空间探测器都使用了这种芯片。1989年发射的木星探测器 伽利略号也装配了这种处理器。选用CDP1802,一是因为它可以在很低的功耗下运行*;二是因为它采的工艺可以更好地抗宇宙射线和电脉冲。因此1802也被认为是第一块抗辐射微处理器。 16位 第一款多片16位微处理器是美国国家半导体公司(NationalSemiconductor)于1973年初期推出的IMP-16,8位的IMP-8芯片组又于1974年推出。1975年该公司推出了第一款单片16位微处理器,PACE,其基于NMOS技术的新版本,INS8900不久就替代了它。 其他早期的多片16位微处理器包括DEC用于PDP11小型机系列中LSI-11和PDP-11/30上的主板,还有仙童公司的MicroFlame9440,这两款都是在1975年到1976年推出的。 另外德州仪器出的TMS9900也是早期的单片16位处理器,同TI990兼容。9900用在了TI990/4小型机,TI-99/4A家用电脑和TM990系列OEM品牌微机上。这块芯片封装成在一块陶瓷64脚双内线(DIP)芯片,而当时大多数8位微处理器都用更便宜的40脚DIP。后续产品TMS9980针对英特尔的8080推出,全兼容TI990的16位指令集,一次传输8位数据,设计成塑料40脚DIP,但是只能寻址16KB。TMS9995是这个系列的第三块芯片,使用了全新的设计。此系列产品后来扩展到了99105和99110。 英特尔走了一条不同的路,由于没有小型机可以模拟,他们采取扩充8080的办法设计出了16位的8086,这是后来几乎统治PC芯片的x86家族的第一个成员。英特尔推出的8086使得8080上的软件可以很经济的移植重用,商业上获得的成功超出预期。接着英特尔又发布80186,80286,还有1985年推出的32位80386,这些处理器都是向前兼容的,造就了英特尔PC市场的霸主地位。 集成内存管理器的微处理器是英特尔公司的柴尔茨等开发的,获得美国专利号4442484。 32位 16位的设计刚刚进入市场,32位的微处理器就出现了。 世界上第一块单片32位微处理器是AT&T贝尔实验室的BELLMAC-32A,样本于1980年,1982年正式投产。1984年AT&T解体后更名为WE32000(WE代表西部电子),后来又推出了后续产品WE32100和WE32200。这些芯片用在了AT&T的3B5及3B14小型计算机、世界上第一台超级台式微机3B2,还有世界上第一台笔记本式超级微机“亚历山大”上(这种系统使用类似于现在游戏机上用的ROM插件)。所有这些系统都运行贝尔实验室的UNIX操作系统,包括叫做xt-layers的第一个窗口系统。英特尔最著名的32位微处理器是摩托罗拉于1979年推出的MC68000。这片被称为68K的芯片具有32位的寄存器,但是内部和外部数据总线都是16位的,这样可以减少芯片的脚数。摩托罗拉将其描述为16位处理器,但是显然这是块有32位结构的芯片。由于速度快、内存寻址空间大(16兆)价格低廉,MC68000很快成为此类CPU中最流行的型号。1980年代中期,很多公司都用它来装配机器,其中包括AtariST和CommodoreAmiga,最为知名的大概算苹果公司的AppleLisa和Macintosh了。 英特尔的第一款32位微处理器是iAPX432,于1981年推出,但市场上并未获得成功。此产品有先进的面向对象架构,但同其它同类产品,特别是68000比,性能较差。 68000的成功让摩托罗拉继续推出MC68010,这块芯片加入了对虚拟内存的支持。1985年又推出了MC68020,增加了完全的32位数据和地址总线。68020在Unix超级微机市场上获得巨大成功,许多小公司也用它生产桌面系统。MC68030芯片内集成了内存管理器,几乎成为除DOS外所有机器的标准处理器。MC68040合成了浮点运算器,数学运算性能得到提高。68050未能达到设计要求,没有发行。后继的68060采用了更快的RISC设计。1990年代早期,68K开始淡出桌面系统的市场。 其他大公司用68020设计嵌入式系统。曾几何时,运行在嵌入式系统上的68020芯片比运行在PC机上的英特尔奔腾芯片都多。(见此网页。摩托罗拉的"冷火"处理器也是68020的一种变种。 在此期间(1980年早期到中期),国家半导体推出了一种非常类似的16位外部数据线,32位内部总线的微处理器,称为NS16032(后改名为32016)。全32位版本称作32032,以及一系列工业用OEM微机。待到1980年代中期,Sequent使用NS32032推出了第一款对称多处理器服务器。这款服务器少有对手,但1980年代晚期就消失了。 其他较值得注意的芯片包括Zilog的Z8000,但是推出太迟,未能在市场上立足即消声匿迹了。 一些芯片在20世纪80年代晚期上演的微处理器大战中开始淡出,甚至逐渐退出市场。结果仅有一种出色产品的SequentNS32032系统逐步消失,Sequent也改用英特尔的微处理器。 RISC技术 1980年代中期到1990年代早期,一类新型高性能RISC(精简指令集计算机)崭露头角,这些芯片最初用于专用机器和unix工作站,但很快就在各领域流行起来了。当然,不包括英特尔的个人计算机。 最早的商业产品是MIPS发布的32位R2000微处理器(R1000没有正式发布)。后续产品R3000是真正实用的型号,R4000则是世界上第一个64位RISC芯片。同类产品还有IBM的Power系列和Sun的SPARC系列。很快所有的厂商都开始生产RISC,包括AT&T的CRISP,AMD29000,英特尔的i860及i960,摩托罗拉88000,DECAlpha和HP的PA。 激烈的市场竞争淘汰了很多系列,现在POWER和派生的PowerPC系列成了个人电脑RISC芯片的主流。只有Sun还在使用SPARC架构。MIPS继续为SGI系统提供支持,但主要用于嵌入式系统,特别是思科的路由器。其他的系统要么已经绝迹,要么也奄奄一息。其他公司也曾经试图分一杯羹,如ARM公司原打算进军家用电脑市场,但后来还是专注于嵌入式处理器了。现今基于RISC的计算设备由MIPS,ARM和PowerPC占据了市场的主流。 当然在IBM兼容机领域内,英特尔,AMD以及台湾的VIA都生产x86兼容的微处理器。到2004年底,DEC和AMD合作的ALPHA,AMD64,以及HP和英特尔合作的安腾是最流行的型号。 § 发展概况 微处理器的发展大致分为四个阶段。 第一阶段(1971~1973年)的代表性机种是美国 Intel公司制成的4004、4040和8008。这一阶段微处理器的主要特点是采用P沟道金属-氧化物-半导体集成电路(PMOS电路),速度较慢,指令系统也不太完整,主要用于控制和简单仪表。 第二阶段(1974~1977年)微处理器设计日趋成熟,代表性的机种是Intel公司8080和8085、美国Motorola公司的Mc 6800和Zilog公司的 Z80。这一阶段微处理器采用了N沟道金属-氧化物-半导体集成电路(NMOS电路),处理数据宽度为8位,指令系统比较完整,功能较强,用其构成的微型计算机可以配备较多的外围设备,并有较成熟的系统软件。 第三阶段(1978~1980年)微处理器向16位数据宽度发展,其代表性的机种是Intel 8086、Motorola Mc68000和ZilogZ8000。这一阶段微处理器采用了短沟道高性能的NMOS电路,16位微处理器构成的微计算机采用了传统的小型机以至大型机的系统结构的设计思想,所以功能很强,存储容量在 1兆字节以上,还可配备大容量的二级存储器;操作系统功能也很强;一般还考虑了多机系统工作环境。这一期间微处理器的研制更加注意系列化,用它构成的微计算机的软件能向上兼容,软件研究工作的比重也显著增加。 第四阶段是从1981年开始的。这一时期内,16位微处理器结构更加完善,32位数据处理宽度的微处理器也已研制成功。这些微处理器构成的微型机的系统结构、系统软件和外围设备的配置日益接近超级小型机。 Intel 4004 1971年,英特尔公司推出了世界上第一款微处理器4004,这是第一个可用于微型计算机的四位微处理器,它包含2300个晶体管。随后英特尔又推出了8008,由于运算性能很差,其市场反应十分不理想。1974年,8008发展成8080,成为第二代微处理器。8080作为代替电子逻辑电路的器件被用于各种应用电路和设备中,如果没有微处理器,这些应用就无法实现。 由于微处理器可用来完成很多以前需要用较大设备完成的计算任务,价格又便宜,于是各半导体公司开始竞相生产微处理器芯片。Zilog公司生产了8080的增强型Z80,微处理器摩托罗拉公司生产了6800,英特尔公司于1976年又生产了增强型8085,但这些芯片基本没有改变8080的基本特点,都属于第二代微处理器。它们均采用NMOS工艺,集成度约9000只晶体管,平均指令执行时间为1μS~2μS,采用汇编语言、BASIC、Fortran编程,使用单用户操作系统。 Intel 8086 1978年英特尔公司生产的8086是第一个16位的微处理器。很快Zilog公司和摩托罗拉公司也宣布计划生产Z8000和68000。这就是第三代微处理器的起点。 8086微处理器最高主频速度为8MHz,具有16位数据通道,内存寻址能力为1MB。同时英特尔还生产出与之相配合的数学协处理器i8087,这两种芯片使用相互兼容的指令集,但i8087指令集中增加了一些专门用于对数、指数和三角函数等数学计算的指令。人们将这些指令集统一称之为 x86指令集。虽然以后英特尔又陆续生产出第二代、第三代等更先进和更快的新型CPU,但都仍然兼容原来的x86指令,而且英特尔在后续CPU的命名上沿用了原先的x86序列,直到后来因商标注册问题,才放弃了继续用阿拉伯数字命名。 1979年,英特尔公司又开发出了8088。8086和8088在芯片内部均采用16位数据传输,所以都称为16位微处理器,但8086每周期能传送或接收16位数据,而8088每周期只采用8位。因为最初的大部分设备和芯片是8位的,而8088的外部8位数据传送、接收能与这些设备相兼容。8088采用40针的DIP封装,工作频率为6.66MHz、7.16MHz或8MHz,微处理器集成了大约29000个晶体管。8086和8088问世后不久,英特尔公司就开始对他们进行改进,他们将更多功能集成在芯片上,这样就诞生了80186和80188。这两款微处理器内部均以16位工作,在外部输入输出上80186采用16位,而80188和8088一样是采用8位工作。 1981年,美国IBM公司将8088芯片用于其研制的PC机中,从而开创了全新的微机时代。也正是从8088开始,个人电脑(PC)的概念开始在全世界范围内发展起来。从8088应用到IBM PC机上开始,个人电脑真正走进了人们的工作和生活之中,它也标志着一个新时代的开始。 Intel 80286 1982年,英特尔公司在8086的基础上,研制出了80286微处理器,该微处理器的最大主频为20MHz,内、外部数据传输均为16位,使用24位内存储器的寻址,内存寻址能力为16MB。80286可工作于两种方式,一种叫实模式,另一种叫保护方式。在实模式下,微处理器可以访问的内存总量限制在1兆字节;而在保护方式之下,80286可直接访问16兆字节的内存。此外,80286工作在保护方式之下,可以保护操作系统,使之不像实模式或8086等不受保护的微处理器那样,在遇到异常应用时会使系统停机。 IBM公司将80286微处理器用在先进技术微机即AT机中,引起了极大的轰动。80286在以下四个方面比它的前辈有显著的改进:支持更大的内存;能够模拟内存空间;微处理器能同时运行多个任务;提高了处理速度。最早PC机的速度是4MHz,第一台基于80286的AT机运行速度为6MHz至8MHz,一些制造商还自行提高速度,使80286达到了20MHz,这意味着性能上有了重大的进步。 80286的封装是一种被称为PGA的正方形包装。PGA是源于PLCC的便宜封装,它有一块内部和外部固体插脚,在这个封装中,80286集成了大约130000个晶体管。 IBM PC/AT微机的总线保持了XT的三层总线结构,并增加了高低位字节总线驱动器转换逻辑和高位字节总线。与XT机一样,CPU也是焊接在主板上的。 那时的原装机仅指IBM PC机,而兼容机就是除了IBM PC以外的其它机器。在当时,生产CPU的公司除英特尔外,还有AMD及西门子公司等,而人们对自己电脑用的什么CPU也不关心,因为AMD等公司生产的CPU几乎同英特尔的一样,直到486时代人们才关心起自己的CPU来。 8086~80286这个时代是个人电脑起步的时代,当时在国内使用甚至见到过PC机的人很少,它在人们心中是一个神秘的东西。到九十年代初,国内才开始普及计算机。从386到奔腾 Intel 80386 Intel 80386 1985年春天的时候,英特尔公司已经成为了第一流的芯片公司,它决心全力开发新一代的32位核心的CPU—80386。Intel给80386设计了三个技术要点:使用“类286”结构,开发80387微处理器增强浮点运算能力,开发高速缓存解决内存速度瓶颈。 1985年10月17日,英特尔划时代的产品——80386DX正式发布了,其内部包含27.5万个晶体管,时钟频率为12.5MHz,后逐步提高到20MHz、25MHz、33MHz,最后还有少量的40MHz产品。80386DX的内部和外部数据总线是32位,地址总线也是32位,可以寻址到4GB内存,并可以管理64TB的虚拟存储空间。它的运算模式除了具有实模式和保护模式以外,还增加了一种“虚拟86”的工作方式,可以通过同时模拟多个8086微处理器来提供多任务能力。 80386DX有比80286更多的指令,频率为12.5MHz的80386每秒钟可执行6百万条指令,比频率为16MHz的80286快2.2倍。80386最经典的产品为80386DX-33MHz,一般我们说的80386就是指它。由于32位微处理器的强大运算能力,PC的应用扩展到很多的领域,如商业办公和计算、工程设计和计算、数据中心、个人娱乐。80386使32位CPU成为了PC工业的标准。 虽然当时80386没有完善和强大的浮点运算单元,但配上80387协处理器,80386就可以顺利完成许多需要大量浮点运算的任务,从而顺利进入了主流的商用电脑市场。另外,30386还有其他丰富的外围配件支持,如82258(DMA控制器)、8259A(中断控制器)、8272(磁盘控制器)、82385(Cache控制器)、82062(硬盘控制器)等。针对内存的速度瓶颈,英特尔为80386设计了高速缓存(Cache),采取预读内存的方法来缓解这个速度瓶颈,从此以后,Cache就和CPU成为了如影随形的东西。 Intel 80387/80287 严格地说,80387并不是一块真正意义上的CPU,而是配合80386DX的协处理芯片,也就是说,80387只能协助80386完成浮点运算方面的功能,功能很单一。 Intel 80386SX 1989年英特尔公司又推出准32位微处理器芯片80386SX。这是Intel为了扩大市场份额而推出的一种较便宜的普及型CPU,它的内部数据总线为32位,外部数据总线为16位,它可以接受为80286开发的16位输入/输出接口芯片,降低整机成本。80386SX推出后,受到市场的广泛的欢迎,因为80386SX的性能大大优于80286,而价格只是80386的三分之一。 Intel 80386SL/80386DL 英特尔在1990年推出了专门用于笔记本电脑的80386SL微处理器和80386DL两种型号的386芯片。这两个类型的芯片可以说是80386DX/SX的节能型,其中,80386DL是基于80386DX内核,而80386SL是基于80386SX内核的。这两种类型的芯片,不但耗电少,而且具有电源管理功能,在CPU不工作的时候,自动切断电源供应。 Motorola 68000 摩托罗拉的68000是最早推出的32位微微处理器,当时是1984年,推出后,性能超群,并获得如日中天的苹果公司青睐,在自己的划时代个人电脑“PC-MAC ”中采用该芯片。但80386推出后,日渐没落。 AMD Am386SX/DX AMD的Am386SX/DX是兼容80386DX的第三方芯片,性能上和英特尔的80386DX相差无己,也成为当时的主流产品之一。 IBM 386SLC 这个是由IBM在研究80386的基础上设计的,和80386完全兼容,由英特尔生产制造。386SLC基本上是一个在80386SX的基础上配上内置Cache,同时包含80486SX的指令集,性能也不错。微处理器Intel 80486 1989年,我们大家耳熟能详的80486芯片由英特尔推出。这款经过四年开发和3亿美元资金投入的芯片的伟大之处在于它首次实破了100万个晶体管的界限,集成了120万个晶体管,使用1微米的制造工艺。80486的时钟频率从25MHz逐步提高到33MHz、40MHz、50MHz。 80486是将80386和数学协微处理器80387以及一个8KB的高速缓存集成在一个芯片内。80486中集成的80487的数字运算速度是以前80387的两倍,内部缓存缩短了微处理器与慢速DRAM的等待时间。并且,在80x86系列中首次采用了RISC(精简指令集)技术,可以在一个时钟周期内执行一条指令。它还采用了突发总线方式,大大提高了与内存的数据交换速度。由于这些改进,80486的性能比带有80387数学协微处理器的80386 DX性能提高了4倍。 随着芯片技术的不断发展,CPU的频率越来越快,而PC机外部设备受工艺限制,能够承受的工作频率有限,这就阻碍了CPU主频的进一步提高。在这种情况下,出现了CPU倍频技术,该技术使CPU内部工作频率为微处理器外频的2~3倍,486 DX2、486 DX4的名字便是由此而来。 Intel 80486 DX 常见的80486 CPU有80486 DX-33、40、50。486 CPU与386 DX一样内外都是32位的,但是最慢的486 CPU也比最快的386 CPU要快,这是因为486 SX/DX执行一条指令,只需要一个振荡周期,而386DX CPU却需要两个周期。 Intel 80486 SX 因为80486 DX CPU具有内置的浮点协微处理器,功能强大,当然价格也就比较昂贵。为了适应普通的用户的需要,尤其是不需要进行大量浮点运算的用户,英特尔公司推出了486 SX CPU。80486 SX主板上一般都有80487协微处理器插座,如果需要浮点协微处理器的功能,可以插上一个80487协微处理器芯片,这样就等同于486 DX了。常见的80486 SX CPU有:80486 SX-25、33。 Intel 80486 DX2/DX4 其实这种CPU的名字与频率是有关的,这种CPU的内部频率是主板频率的两/四倍,如80486 DX2-66,CPU的频率是66MHz,而主板的频率只要是33MHz就可以了。 Intel 80486 SL CPU 80486 SL CPU最初是为笔记本电脑和其他便携机设计的,与386SL一样,这种芯片使用3.3V而不是5V电源,而且也有内部切断电路,使微处理器和其他一些可选择的部件在不工作时,处于休眠状态,这样就可以减少笔记本电脑和其他便携机的能耗,延长使用时间。 Intel 486 OverDrive 升级486 SX可以在主板的协微处理器插槽上安装一个80487SX芯片,使其等效于486 DX,但是这样升级后,只是增加了浮点协微处理器的能力,并没有提高系统的速度。为了提高系统的速度,还有另外一种升级的方法,就是在协微处理器插槽上插上一个486 OverDrive CPU,它的原理与486 DX2 CPU一样,其内部操作速度可以是外部速度的两倍。如一个20MHz的主板上安插了OverDrive CPU之后,CPU内部的操作速度可以达到40MHz。486 OverDrive CPU也有浮点协微处理器的功能,常见的有:OverDrive-50、66、80。 TI 486 DX 作为全球知名的半导体厂商之一,美国德州仪器(TI)也在486时代异军突起,它自行生产了486 DX系列CPU,尤其在486DX2成为主流后,其DX2-80因较高的性价比成为当时主流产品之一,TI 486最高主频为DX4-100,但其后再也没有进入过CPU市场。 Cyrix 486DLC 这是Cyrix公司生产的486 CPU,说它是486 CPU,是指它的效率上逼近486 CPU,却并不是严格意义上的486 CPU,这是由486 CPU的特点而定的。486DLC CPU只是将386DX CPU与1K Cache组合在一块芯片里,没有内含浮点协微处理器,执行一条指令需要两个振荡周期。但是由于486DLC CPU设计精巧,486DLC-33 CPU的效率逼近英特尔公司的486 SX-25,而486DLC-40 CPU则超过了486 SX-25,并且486DLC-40 CPU的价格比486 SX-25便宜。486DLC CPU是为了升级386DM而设计的,如果原来有一台386电脑,想升级到486,但是又不想更换主板,就可以拔下原来的386 CPU,插上一块486DLC CPU就可以了。 Cyrix 5x86 自从英特尔另辟蹊径,开发了Pentium之后,Cyrix也很快推出了自己的新一代产品5x86。它仍然延用原来486系列的CPU插座,而将主频从100MHz提高到120MHz。5x86比起486来说性能是有所增加,可是比起Pentium来说,不但浮点性能远远不足,就连Cyrix一向自豪的整数运算性能也不那么高超,给人一种比上不足比下有余的感觉。由于5x86可以使用486的主板,因此一般将它看成是过渡产品。 AMD 5x86 AMD 486DX是AMD公司在 486市场的利器,它内置16KB回写缓存,并且开始了单周期多指令的时代,还具有分页虚拟内存管理技术。由于后期TI推出了486DX2-80,价格非常低,英特尔又推出了Pentium系列,AMD为了抢占市场的空缺,推出了5x86系列CPU。它是486级最高主频的产品,为5x86-120及133。它采用了一体的16K回写缓存,0.35微米工艺,33×4的133频率,性能直指Pentiun 75,并且功耗要小于Pentium。 Intel Pentium 1993年,全面超越486的新一代586 CPU问世,为了摆脱486时代微处理器名称混乱的困扰,英特尔公司把自己的新一代产品命名为Pentium(奔腾)以区别AMD和微处理器Cyrix的产品。AMD和Cyrix也分别推出了K5和6x86微处理器来对付芯片巨人,但是由于奔腾微处理器的性能最佳,英特尔逐渐占据了大部分市场。 Pentium最初级的CPU是Pentium 60和Pentium 66,分别工作在与系统总线频率相同的60MHz和66MHz两种频率下,没有我们现在所说的倍频设置。 早期的奔腾75MHz~120MHz使用0.5微米的制造工艺,后期120MHz频率以上的奔腾则改用0.35微米工艺。经典奔腾的性能相当平均,整数运算和浮点运算都不错。 Intel Pentium MMX 为了提高电脑在多媒体、3D图形方面的应用能力,许多新指令集应运而生,其中最著名的三种便是英特尔的MMX、SSE和AMD的3D NOW!。 MMX(MultiMedia Extensions,多媒体扩展指令集)是英特尔于1996年发明的一项多媒体指令增强技术,包括57条多媒体指令,这些指令可以一次处理多个数据,MMX技术在软件的配合下,就可以得到更好的性能。多能奔腾(Pentium MMX)的正式名称就是“带有MMX技术的Pentium”,是在1996年底发布的。从多能奔腾开始,英特尔就对其生产的CPU开始锁倍频了,但是MMX的CPU超外频能力特别强,而且还可以通过提高核心电压来超倍频,所以那个时候超频是一个很时髦的行动。超频这个词语也是从那个时候开始流行的。 多能奔腾是继Pentium后英特尔又一个成功的产品,其生命力也相当顽强。多能奔腾在原Pentium的基础上进行了重大的改进,增加了片内16KB数据缓存和16KB指令缓存,4路写缓存以及分支预测单元和返回堆栈技术。特别是新增加的57条MMX多媒体指令,使得多能奔腾即使在运行非MMX优化的程序时,也比同主频的Pentium CPU要快得多。 这57条MMX指令专门用来处理音频、视频等数据。这些指令可以大大缩短CPU在处理多媒体数据时的等待时间,使CPU拥有更强大的数据处理能力。与经典奔腾不同,多能奔腾采用了双电压设计,其内核电压为2.8V,系统I/O电压仍为原来的3.3V。如果主板不支持双电压设计,那么就无法升级到多能奔腾。多能奔腾的代号为P55C,是第一个有MMX技术(整量型单元执行)的CPU,拥有16KB数据L1 Cache,16KB指令L1 Cache,兼容SMM,64位总线,528MB/s的频宽,2时钟等待时间,450万个晶体管,功耗17瓦。支持的工作频率有:133MHz、150MHz、166MHz、200MHz、233MHz。 Intel Pentium Pro 曾几何时,Pentium Pro是高端CPU的代名词,Pentium Pro所表现的性能在当时让很多人大吃一惊,但是Pentium Pro是32位数据结构设计的CPU,所以Pentium Pro运行16位应用程序时性能一般,但仍然是32位的赢家,但是后来,MMX的出现使它黯然失色。Pentium Pro(高能奔腾,686级的CPU)的核心架构代号为P6(也是未来PⅡ、PⅢ所使用的核心架构),这是第一代产品,二级Cache有256KB或512KB,最大有1MB的二级Cache。工作频率有:133/66MHz(工程样品),150/60MHz、166/66MHz、180/60MHz、200/66MHz。 AMD K5 K5是AMD公司第一个独立生产的x86级CPU,发布时间在1996年。由于K5在开发上遇到了问题,其上市时间比英特尔的Pentium晚了许多,再加上性能不好,这个不成功的产品一度使得AMD的市场份额大量丧失。K5的性能非常一般,整数运算能力不如Cyrix的6x86,但是仍比Pentium略强,浮点运算能力远远比不上Pentium,但稍强于Cyrix。综合来看,K5属于实力比较平均的那一种产品。K5低廉的价格显然比其性能更能吸引消费者,低价是这款CPU最大的卖点。 AMD K6 AMD 自然不甘心Pentium在CPU市场上呼风唤雨,因此它们在1997年又推出了K6。K6这款CPU的设计指标是相当高的,它拥有全新的MMX指令以及64KB L1 Cache(比奔腾MMX多了一倍),整体性能要优于奔腾MMX,接近同主频PⅡ的水平。K6与K5相比,可以平行地处理更多的指令,并运行在更高的时钟频率上。AMD在整数运算方面做得非常成功,K6稍微落后的地方是在运行需要使用到MMX或浮点运算的应用程序方面,比起同样频率的Pentium 要差许多。K6拥有32KB数据L1 Cache,32KB指令L1 Cache,集成了880万个晶体管,采用0.35微米技术,五层CMOS,C4工艺反装晶片,内核面积168平方毫米(新产品为68平方毫米),使用Socket7架构。 Cyrix 6x86/MX Cyrix 也算是一家老资格的CPU开发商了,早在x86时代,它和英特尔,AMD就形成了三雄并立的局面。 自从Cyrix与美国国家半导体公司合并后,使它终于拥有了自己的芯片生产线,成品也日益完善和完备。Cyrix的6x86是投放到市场上与Pentium兼容的微处理器。 IDT WinChip 美国IDT公司(Integrated Device Technology)作为微处理器新加入此领域的CPU生产厂商,在1997年推出的第一个微微处理器产品是WinChip(即C6),在整个CPU市场上所占的份额还不足1%。1998年5月,IDT宣布了它的第二代产品WinChip 2 。WinChip 2在原有WinChip的基础上作了一些改进,增加了一个双指令的MMX单元,增强了浮点运算功能。改进后的WinChip 2比相同频率的WinChip性能提高约10%,基本达到Intel Pentium微处理器的性能。 Intel PentiumⅡ 1997年~1998年是CPU市场竞争异常激烈的一年,这一时期的CPU芯片异彩纷呈,令人目不暇接。PentiumⅡ的中文名称叫“奔腾二代”,它有Klamath、Deschutes、Mendocino、Katmai等几种不同核心结构的系列产品,其中第一代采用Klamath核心,0.35微米工艺制造,内部集成750万个晶体管,核心工作电压为2.8V。 PentiumⅡ微处理器采用了双重独立总线结构,即其中一条总线连通二级缓存,另一条负责主要内存。PentiumⅡ使用了一种脱离芯片的外部高速L2 Cache,容量为512KB,并以CPU主频的一半速度运行。作为一种补偿,英特尔将PentiumⅡ的L1 Cache从16KB增至32KB。另外,为了打败竞争对手,英特尔第一次在PentiumⅡ中采用了具有专利权保护的Slot 1接口标准和SECC(单边接触盒)封装技术。 1998年4月16日,英特尔第一个支持100MHz额定外频的、代号为Deschutes的350、400MHz CPU正式推出。采用新核心的PentiumⅡ微处理器不但外频提升至100MHz,而且它们采用0.25微米工艺制造,其核心工作电压也由2.8V降至2.0V,L1 Cache和L2 Cache分别是32KB、512KB。支持芯片组主要是Intel的440BX。在1998年至1999年间,英特尔公司推出了比PentiumⅡ功能更强大的CPU--Xeon(至强微处理器)。该款微处理器采用的核心和PentiumⅡ差不多,0.25微米制造工艺,支持100MHz外频。Xeon最大可配备2MB Cache,并运行在CPU核心频率下,它和PentiumⅡ采用的芯片不同,被称为CSRAM(Custom StaticRAM,定制静态存储器)。除此之外,它支持八个CPU系统;使用36位内存地址和PSE模式(PSE36模式),最大800MB/s的内存带宽。Xeon微处理器主要面向对性能要求更高的服务器和工作站系统,另外,Xeon的接口形式也有所变化,采用了比Slot 1稍大一些的Slot 2架构(可支持四个微处理器)。 Intel Celeron(赛扬) 英特尔为进一步抢占低端市场,于1998年4月推出了一款廉价的CPU—Celeron(中文名叫赛扬)。最初推出的Celeron有266MHz、300MHz两个版本,且都采用Covington核心,0.35微米工艺制造,内部集成1900万个晶体管和32KB一级缓存,工作电压为2.0V,外频66MHz。Celeron与PentiumⅡ相比,去掉了片上的L2 Cache,此举虽然大大降低了成本,但也正因为没有二级缓存,该微处理器在性能上大打折扣,其整数性能甚至不如Pentium MMX。 为弥补缺乏二级缓存的Celeron微处理器性能上的不足,进一步在低端市场上打击竞争对手,英特尔在Celeron266、300推出后不久,又发布了采用Mendocino核心的新Celeron微处理器—Celeron300A、333、366。与旧Celeron不同的是,新Celeron采用0.25微米工艺制造,同时它采用Slot 1架构及SEPP封装形式,内建32KB L1 Cache、128KB L2 Cache,且以CPU相同的核心频率工作,从而大大提高了L2 Cache的工作效率。 AMD K6-2 AMD于1998年4月正式推出了K6-2微处理器。它采用0.25微米工艺制造,芯片面积减小到了68平方毫米,晶体管数目也增加到930万个。另外,K6-2具有64KB L1 Cache,二级缓存集成在主板上,容量从512KB到2MB之间,速度与系统总线频率同步,工作电压为2.2V,支持Socket 7架构。K6-2是一个K6芯片加上100MHz总线频率和支持3D Now!浮点指令的“结合物”。3D Now!技术是对x86体系的重大突破,它大大加强了处理3D图形和多媒体所需要的密集浮点运算性能。此外,K6-2支持超标量MMX技术,支持100MHz总线频率,这意味着系统与L2缓存和内存的传输率提高近50%,从而大大提高了整个系统的表现。 Cyrix MⅡ 作为Cyrix公司独自研发的最后一款微处理器,Cyrix MⅡ是于1998年3月开始生产的。除了具有6x86本身的特性外,该微处理器还支持MMX指令,其核心电压为2.9V,具有256字节指令;3.5X倍频;核心内集成650万个晶体管,功耗20.6瓦;64KB一级缓存。 Rise mp6 Rise公司是一家成立于1993年11月的美国公司,主要生产x86兼容的CPU,在1998年推出了mP6 CPU。mp6不仅价格便宜,而且性能优异,有着很好的多媒体性能和强大的浮点运算。mp6使用Socket 7/Super 7兼容插座,只有16KB的一级缓存。 Intel PentiumⅢ 1999年春节刚过,英特尔公司就发布了采用Katmai核心的新一代微处理器—PentiumⅢ。该微处理器除采用0.25微米工艺制造,内部集成950万个晶体管,Slot 1架构之外,它还具有以下新特点:系统总线频率为100MHz;采用第六代CPU核心—P6微架构,针对32位应用程序进行优化,双重独立总线;一级缓存为32KB(16KB指令缓存加16KB数据缓存),二级缓存大小为512KB,以CPU核心速度的一半运行;采用SECC2封装形式;新增加了能够增强音频、视频和3D图形效果的SSE(Streaming SIMD Extensions,数据流单指令多数据扩展)指令集,共70条新指令。PentiumⅢ的起始主频速度为450MHz。和PentiumⅡ Xeon一样,英特尔同样也推出了面向服务器和工作站系统的高性能CPU—PentiumⅢ Xeon至强微处理器。除前期的PentiumⅡ Xeon500、550采用0.25微米技术外,该款微处理器是采用0.18微米工艺制造,Slot 2架构和SECC封装形式,内置32KB一级缓存和512KB二级缓存,工作电压为1.6V。 Intel CeleronⅡ 为进一步巩固低端市场优势,英特尔于2000年3月29日推出了采用Coppermine核心CeleronⅡ。该款微处理器同样采用0.18微米工艺制造,核心集成1900万个晶体管,采用FC-PGA封装形式,它和赛扬Mendocino一样内建128KB和CPU同步运行的L2 Cache,故其内核也称为Coppermine 128。CeleronⅡ不支持多微处理器系统。但是,CeleronⅡ的外频仍然只有66MHz,这在很大程度上限制了其性能的发挥。 AMD K6-Ⅲ AMD于1999年2月推出了代号为“Sharptooth”(利齿)的K6-Ⅲ,它是该公司最后一款支持Super 7架构和CPGA封装形式的CPU,采用0.25微米制造工艺、内核面积是135平方毫米,集成了2130万个晶体管,工作电压为2.2V/2.4V。 相对于K6-2而言,K6-Ⅲ最大的变化就是内部集成了256KB二级缓存(新赛扬只有128KB),并以CPU的主频速度运行。K6-Ⅲ的这一变化将能够更大限度发挥高主频的优势。此外,该微处理器还带有64KB一级缓存(32KB用于指令,另32KB用于数据),而且在主板上还集成了以系统总线频率同步运行的三级缓存,其容量大小从512KB到2MB之间。AMD AthlonAMD Athlon 1999年6月23日,AMD公司推出了具有重大战略意义的K7微处理器,并将其正式命名为Athlon。K7有两种规格的产品:第一种采用0.25微米工艺制造,使用K7核心,工作电压为1.6V(其缓存以主频速度的一半运行);第二种采用0.18微米工艺制造,使用K75核心;工作电压有1.7V和1.8V两种。上述两种类型的K7微处理器内部都集成了2130万个晶体管,外频均为200MHz。Athlon包含128KB的L1 Cache(PⅡ/PⅢ只有32KB);512KB~1MB L2 Cache的片外缓存。同时,它还采用了全新的宏处理结构,拥有三个并行的x86指令译码器,可以动态推测时序,乱序执行;K7拥有一个强劲的浮点处理单元,在3DNOW!指令的帮助下会有更进一步的3D和多媒体处理能力,这个先进的FPU使K7拥有超越其他x86微处理器2倍的性能!另外,K7采用了一种类似于Slot 1的全新的Slot A架构,从物理结构上两者可以互换,但后者的电器性能和前者完全不兼容。在总线方面,使用的是Digital公司的Alpha系统总线协议EV6,外频达200MHz;Athlon是AMD第一个具有SMP(对称多微处理器技术)能力的桌面CPU,即使用者可以用Athlon构建双微处理器甚至4微处理器系统! AMD Thunderbird和Duron AMD公司在2000年6月份连续推出了新款的Thunderbird(雷鸟)、Duron(毒龙)微处理器,再次向英特尔Coppermine(铜矿)核心的微处理器发出了强有力的挑战。 Thunderbird是AMD面向高端的Athlon系列延续产品,采用0.18微米的制造工艺,共有Slot A和Socket A两种不同的架构,但它们在设计上大致相同:均内置128KB的一级缓存和256KB的二级缓存,其二级缓存与CPU主频速度同步运行;工作电压为1.70V~1.75V,相应的功耗也比老的Athlon要小;集成3700万个晶体管,核心面积达到120平方毫米。另外,Thunderbird微处理器支持200MHz系统总线频率,提供巨大的带宽,且支持Alpha EV6总线协议,具有多重并行x86指令解码器。 Duron微处理器是AMD首款基于Athlon核心改进的低端微处理器,它原来的研发代号称为“Spitfire”。Duron外频也是200MHz,内置128KB的一级缓存和64KB的全速二级缓存,它的工作电压为1.5V,因而功耗要较Thunderbird小。而且它核心面积是100平方毫米,内部集成的晶体管数量为2500万个,比K7核心的Athlon多300万个。这些特点符合了AMD面对低端市场的策略,即低成本低功耗而又高性能。在浮点性能上,基于K7体系的Duron明显优于采用P6核心设计的Intel系列微处理器,它具有三个全流水乱序执行单元,一个用于加/减运算,一个用于复合指令还有一个是浮点存储单元。VIA CyrixⅢVIA CyrixⅢ VIA公司在收购Cyrix之后,同期正式推出了代号为Joshua的第一款微处理器,它采用0.18微米工艺制造,Socket 370架构,支持133MHz外频,并拥有256KB L2 Cache及3D NOW!指令集。 另外,VIA后来还推出了采用新一代Samuel核心的CyrixⅢ微处理器,它加入新一代的3D Now!多媒体指令集,提供133MHz系统外频,128K一级高速缓存,采用0.18微米制造工艺生产,芯片面积仅76平方毫米。它还采用了动态电源缓存结构(Dynamic Power Caching Architecture,DPCA)技术,使新CyrixⅢ微处理器的耗电量已不到10瓦,因此新CyrixⅢ微处理器也可适用在笔记型电脑或其它IA产品上。 § 内部结构 16位微处理器(图中为8086微处理器)可分成两个部分,一部分是执行部件(EU),即执行指令的部分;另一部分是总线接口部件(BIU),与8086总线联系,执行从存储器取指令的操作。微处理器分成EU和BIU后,可使取指令和执行指令的操作重叠进行。EU部分有一个寄存器堆,由8个16位的寄存器组成,可用以存放数据、变址和堆栈指针、算术运算逻辑单元 (ALU)执行算术运算和逻辑操作,标志寄存器寄存这些操作结果的条件。执行部件中的这些部件是通过数据总线传送数据的。总线接口部件也有一个寄存器堆,其中CS、DS、SS和ES是存储空间分段的分段寄存器。IP是指令指针。内部通信寄存器也是暂时存放数据的寄存器。指令队列是把预先取来的指令流存放起来。总线接口部件还有一个地址加法器,把分段寄存器值和偏置值相加,取得20位的物理地址。数据和地址通过总线控制逻辑与外面的8086系统总线相联系。 微处理器 § 多核时代 2000年英特尔公司发布基于超线程技术的奔腾4处理器。尽管不是真正意义上的双核,但这种开创性的理念拉开了多核时代的大幕 英特尔奔腾D处理器基于英特尔奔腾4 处理器的个人电脑用户可以创作专业品质的电影;通过互联网发送像电视一样的视频;使用实时视频语音工具进行交流;实时渲染 3D 图形;为 MP3 播放器快速编码音乐;在与互联网进行连接的状态下同时运行多个多媒体应用。该处理器最初推出时就拥有 4200 万个晶体管和仅为 0.18 微米的电路线。 英特尔首款微处理器 4004 的运行速率为 108KHz,而现今的英特尔 奔腾 4 处理器的初速率已经达到了 1.5GHz,如果汽车的速度也能有同等提升的话,那么从旧金山开车到纽约只需要13 秒。 2005年4月,英特尔的第一款双核处理器平台包括采用英特尔955X高速芯片组、主频为3.2GHz的英特尔奔腾处理器至尊版840,此款产品的问世标志着一个新时代来临了。双核和多核处理器设计用于在一枚处理器中集成两个或多个完整执行内核,以支持同时管理多项活动。英特尔超线程(HT)技术能够使一个执行内核发挥两枚逻辑处理器的作用,因此与该技术结合使用时,英特尔奔腾处理器至尊版840能够充分利用以前可能被闲置的资源,同时处理四个软件线程。英特尔酷睿2双核处理器5月,带有两个处理内核的英特尔奔腾D处理器随英特尔945高速芯片组家族一同推出,可带来某些消费电子产品的特性,例如:环绕立体声音频、高清晰度视频和增强图形功能。2006年1月,英特尔发布了PentiumD9xx系列处理器,包括了支持VT虚拟化技术的PentiumD960(3.60GHz)、950(3.40GHz)和不支持VT的PentiumD945(3.4GHz)、925(3GHz)(注:925不支持VT虚拟化技术)和915(2.80GHz)。 2006年7月,英特尔公司今天面向家用和商用个人电脑与笔记本电脑,发布了十款全新英特尔酷睿2(扣肉)双核处理器和英特尔酷睿至尊处理器。英特尔酷睿2双核处理器家族包括五款专门针对企业、家庭、工作站和玩家(如高端游戏玩家)而定制的台式机处理器,以及五款专门针对移动生活而定制的处理器。首批电脑于今天上市,八月份还将有更多的台式机和笔记本电脑推出。这些英特尔酷睿2双核处理器设计用于提供出色的能效表现,并更快速地运行多种复杂应用,支持用户改进各种任务的处理,例如:更流畅地观看和播放高清晰度视频;在电子商务交易过程中更好地保护电脑及其资产;以及提供更耐久的电池使用时间和更加纤巧时尚的笔记本电脑外形。 全新处理器可实现高达40%的性能提升,其能效比最出色的英特尔奔腾处理器高出40%。英特尔酷睿2双核处理器包含2.91亿个晶体管。不过,PentiumD谈不上是一套完美的双核架构,Intel只是将两个完全独立的CPU核心做在同一枚芯片上,通过同一条前端总线与芯片组相连。两个核心缺乏必要的协同和资源共享能力,而且还必须频繁地对二级缓存作同步化刷新动作,以避免两个核心的工作步调出问题。 § MMX芯片 微处理器的英文缩写是CPU,即中央处理单元,是计算机的核心,计算机完成的每一件工作,都是在它的指挥和干预下完成的。计算机配置的CPU的型号实际上代表着计算机的的基本性能水平。目前市场上最流行的是多功能奔腾级以上的芯片MMX芯片。MMX芯片MMX芯片 MMX是英文MultiMediaeXtension(多媒体扩展)的缩写。英特尔在1996年3月份正式公布了MMX技术的细节后,于1997年1月正式向全球推出基于MMX技术的166MHz和200MHz的Pentium芯片,1997年3月份推出基于MMX技术的233MHz的PentiumPro芯片。 MMX技术是英特尔公司针对X86微处理器体系结构的一次重大扩充,使计算机同多媒体相关任务的综合处理能力提高了1.5~2倍,它不仅是英特尔自i386面世以来对英特尔CPU体系结构的一次显著改进,同时也是英特尔对多媒体数据处理等专用芯片及功能板卡的一次强力挑战。 从芯片设计的角度来看,新技术MMX有以下一些要点: 单指令多数据技术 英特尔为MMX技术设计了一组基本的、通用的整型指令集,以满足各种多媒体和通讯应用的需要。其中最基本的是单指令多数据(即SIMD)技术。该技术允许利用任何新增加的单个指令处理多组数据。 借用寄存器 将CPU中8个浮点运算单元(FPU)重新命名为8个MMX寄存器,因而在物理上不需要增加新的寄存器。这样,现有的操作系统和应用软件无需作任何修改即可运行于具有MMX的CPU上,保证了向下兼容。 增加新指令 增加了57个MMX指令。这些指令都具有一些各自的独特功能。例如分支指令能够利用掩码和位比较在多个操作数中执行逻辑操作,从而达到没有延时的分支效果等等。 采用新的数据类型 新的数据类型包括压缩型字节、压缩型字、压缩型双字和压缩型四字,他们都是压缩的定点整数类型,可以将多个整型机器字压缩到8个64位的MMX寄存器中。将64位数据置于单个寄存器中,使MMXCPU可以同时处理8个字节的数据,这有利于加速计算密集型的循环运算。 由于采用MMX技术的CPU中实际上并没有增加新寄存器,而是借用了8个浮点运算寄存器,于是导致MMX技术的固有缺陷,诸如不能加速所有应用软件的运行速度、多任务环境中可能会出现计算错误以及软件版本需要多样化等等。 值得庆幸的是,英特尔公司在推出相应的MMXCPU的同时也承诺逐步解决上述问题。加之在MMX的实现上,兼容厂商将采取不同的技术。所以对于用户而言,MMX技术的前景是十分乐观的。 § 中国微处理器简介 龙芯2004年2月18日,由清华大学自主研发的32位微处理器THUMP芯片终于领到了由国家教育部颁发的“身份证”:典型工作频率400MHz,功耗1.17mW/MHz,芯片颗粒40片,最高工作频率可达500MHz,是目前国内工作频率最高的微处理器。 “这标志着我国在自主研发CPU芯片领域迈开了实质性的一大步。”教育部对THUMP的诞生给予了较高评价。 领跑自主知识产权运动 清华大学对自主研发CPU芯片准备已久。2000年国务院18号文件即《鼓励软件产业和集成电路产业发展的若干政策》 出台后,清华大学便决定研制一种具有自主知识产权的32位嵌入式微处理器芯片,由副校长龚克亲自带队。经过多名专家院士的讨论到报请校方批准,2002年7月1日,该研究项目正式启动。 2003年7月,研究组送出TSMC流片,同年9月返回测试成功,实际的研发过程不到一年半时间,比预期的两年缩短了半年。据清华信息研究院科研人员介绍,在Intel、AMD等大公司相关人员到清华信息研究院参观时,他们最大的反应莫过于惊奇。“如此短的时间、如此少的经费研制出这样指标的CPU芯片,在他们看来简直是不可思议的。”但研究组不愿透露此次THUMP研发所花费的具体金额。龙芯3号在微处理器问世三十年的今天,要推动一个全新的指令集架构是一个耗资百亿元,费时数年而结果难测的冒险。显然,这不符合飞速发展的中国经济对片上系统嵌入微处理器的要求。曾经辉煌的数字设备公司Alpha架构的烟消云散很清楚地证明了这一点。因此,拟定研发兼容性CPU是“中国芯”赶超国际先进水平的极佳路径。而THUMP芯片正是基于经济效益和技术效益的考虑,实现了与MIPS(目前唯一面向通用处理器和嵌入式处理器的体系结构)兼容。 据了解,伴随THUMP芯片的问世,一套完整的CPU设计验证开发平台和系统应用调试平台也已建立起来。清华大学有关研究人员称,清华有望在推广该平台的同时,还将进行其他更多CPU芯片项目的研发。 此次32位嵌入式微处理器的自主研发,是否意味着中国计算机相关产业自主知识产权的形成胜利在望?业界对此讨论颇为热烈。 清华大学微处理器与系统芯片技术研究中心主任、此次CPU科研小组负责人汪东升教授介绍,THUMP芯片拥有全部自主知识产权,到目前为止,已有6项专利在接受审核。作为一个开端,THUMP芯片的自主研发当之无愧成为中国计算机相关产业自主知识产权运动的“领跑者”。 3-5年手机用上“中国芯” 对THUMP芯片的市场前景和经济效益,汪东升信心十足,“这是毋庸置疑的”!他称,目前THUMP芯片已经通过个别企业和技术部门的应用检验,满意度较高。他还透露,清华近期和国内多家生产设备厂家、销售单位及配套单位都有一定的接触,双方将致力于建立产业化联盟。 据汪东升介绍,THUMP芯片可以应用在数码相机、DVD、HDTV(高清晰度电视)等数字消费类产品,打印机、扫描仪等办公自动化产品,以及掌上电脑、个人数字助理、可视电话、3G手机等移动设备产品上。清华已经研制出了一种网络流量分配器和网络计算机,将在今年3、4月正式对外宣传发布。配置截图显然,国内最高频率的微处理器研制成功,对于科研小组来说只是一个阶段性的胜利。汪东升介绍说,科研小组将对THUMP芯片进行更加详细的性能分析和测试以及可靠性设计。然后进一步完成针对THUMP微处理器的应用开发,提供一批有关网络流量分配器、网关等应用样机,供应用单位试用,为THUMP的推广应用作好技术准备。 另外,THUMP微处理器芯片的兼容性和低功耗优势,使它在嵌入式应用系统方面大有用武之地。Intel加Windows架构长期垄断着通用微处理器市场,但由于嵌入式CPU面向的是一定领域的应用,垄断局面很难形成。有关专家称,目前制造、仪器仪表、军工等领域具有广阔的嵌入式数字化产品市场,以此作为切入点,能够更有效地抢占市场。 “我们将完善THUMP微处理器芯片对Linux和其它国产嵌入式操作系统、WindowsCE等操作系统的支持,在国防应用、工业控制、终端和外设产品等领域大面积地推广应用。”汪称,“在进一步开发性能更高的嵌入式微处理器芯片或通用微处理器芯片等领域,我们已经着手展开了科研工作。” 汪东升还表示,目前我国在CPU研发上基本形成了一种群体突破的局势,预计在今后3-5年里,中国嵌入式CPU市场将会占据很大份额,国产CPU将会越来越多地取代国外品牌,应用在手机、数字电视、电冰箱、洗衣机等产品中。以手机为例,其芯片供应商主要由德州仪器、飞利浦、摩托罗拉等少数国外厂家垄断。 10-15年计划 在汪东升看来,清华自主研发32位嵌入式微处理器的初衷其实是培养人才,积蓄力量,以备将来厚积薄发。 艰苦而复杂的科研工作给科研人员提供了一个锻炼和提高的机会。汪东升称:“让我们自主研制CPU是以前根本不敢想的事,但是经过这次研发,我觉得以后什么都敢去做了。”他表示,随着我国CPU研究领域的不断深入,大量的高端信息人才也会不断积累更多技术知识和经验,使其整体素质得以飞跃。 汪东升认为,大批集成电路设计人才的短缺是我国CPU研制发展的瓶颈。“这正是我们为何把培养人才作为此次研发THUMP芯片的首要目的所在。”汪还告诉记者,我国信息人才流失现象十分严重,如清华、北大等院校培养出来的优秀人才都陆续被Intel等国外先进企业挖出去,造成国内信息企业高端人才的大缺口。 “Intel、AMD等在设计、软件、经验积累上业已成熟,在这些技术领域,我们存在差距是不容否认的。”汪东升冷静分析这次研发的不足。他坦言,由于刚开始担心较大,顾虑较多,所以研发过程总的来说是比较保守的,理所当然会在一定程度上制约科研成果的水平。 此外,任何CPU研制起步都不可逾越的过程:不能找到一个应用切入点。当然,随着中国微处理器研制的不断发展,这是可以逐渐克服的,因为用户也要有一个适应过程。 对于目前我国微处理器研制所处的水平,汪东升的评价是:设计上尚有国际水平,技术基础还较好。“Intel、AMD等在设计、软件、经验积累上业已成熟,在这些技术领域,我们存在差距是不容否认的。”他估计,“从总体水平看,我们与国际最高水平的差距大约在10年左右。” |
随便看 |
百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。