词条 | 土星 |
释义 | § 简介 土星古称镇星或填星,是太阳系八大行星之一。直径约119300公里(为地球的9.5倍),是太阳系第二大行星。它与邻居木星十分相像,表面也是液态氢和氦的海洋,上方同样覆盖着厚厚的云层。土星上狂风肆虐,沿东西方向的风速可超过每小时1600公里。土星上空的云层就是这些狂风造成的,云层中含有大量的结晶氨。 § 名称由来 土星 土星是中国古代人根据五行学说结合肉眼观测到的土星的颜色(黄色)来命名的(按照五行学说即木青、金白、火赤、水黑、土黄)。而其他语言中土星的名称基本上来自神话传说,例如在欧美各主要语言(英语、法语、西班牙语、俄语、葡萄牙语、德语、意大利语等)中土星的名称来自于罗马神话中的农业之神萨图尔努斯(拉丁文:Saturnus),其他的还有希腊神话中的克洛诺斯(泰坦族,宙斯的父亲,一说其在罗马神话中即萨图尔努斯)、巴比伦神话中的尼努尔塔和印度神话中的沙尼。土星的天文学符号是代表农神萨图尔努斯的镰刀。 § 成分构成 土星主要由氢组成,还有少量的氦与微痕元素,内部的核心包括岩石和冰,外围由数层金属氢和气体包覆著。最外层的大气层在外观上通常情况下都是平淡的,虽然有时会有长时间存在的特征出现。土星的风速高达1,800公里/时,明显的比木星上的风快速。土星的行星磁场强度介于地球和更强的木星之间。 土星有一个显著的环系统,主要的成分是冰的微粒和较少数的岩石残骸以及尘土。已经确认的土星的卫星有61颗。其中,土卫六是土星系统中最大和太阳系中第二大的卫星(太阳系最大的卫星是木星的木卫三),比行星中的水星还要大;并且土卫六是唯一拥有明显大气层的卫星。 § 基本信息 土星 土星:半径60268km、质量5.69*10^26kg。 轨道长半径(天文距离单位) 9.539 轨道长半径(千万公里) 1427.0 公转的恒星周期(日) 10759.5 公转的会合周期(日) 378 轨道偏心率 0.056 轨道倾角(度) 2.5 升交点黄经(度) 113.3 近日点黄经(度) 92.3 平均轨道速度(公里) 9.64 赤道半径(公里) 60330 扁率 0.102 质量(地球质量=1) 95.159 密度(克/立方厘米) 0.70 赤道引力(地球=1) 1.08 逃逸速度(公里/秒) 35.6 自转周期(日) 0.426 黄赤交角(度) 26.73 反照率 0.57 最大亮度 -0.4 卫星数(已确认的) 23 自转周期 10小时39分。 公转周期为10759.5天(相当于29.5个地球年) 视星等 0.67等 § 形态特征 在太阳系的行星中,土星的光环最惹人注目,它使土星看上去就像戴着一顶漂亮的大草帽。观测表明构成光环的物质是碎冰块、岩石块、尘埃、颗粒等,它们排列成一系列的圆圈,绕着土星旋转。 土星符号及克洛诺斯土星运动迟缓,人们便将它看做掌握时间和命运的象征。罗马神话中称之为第二代天神克洛诺斯,它是在推翻父亲之后登上天神宝座的。无论东方还是西方,都把土星与人类密切相关的农业联系在一起,在天文学中表示的符号,像是一把主宰着农业的大镰刀。 在1781年发现天王星之前,人们曾认为土星是离太阳最远的行星。在望远镜中可以看到土星被一条美丽的光环围绕。土星还有较多的卫星,到1978年为止,已发现并证实的有10个,以后又陆续有人提出新的发现。 土星在很多方面像木星,如它与木星同属于巨行星,它的体积是地球的745倍,质量是地球的95.18倍。在太阳系八大行星中,土星的大小和质量仅次于木星,占第二位。它像木星一样被色彩斑斓的云带所缭绕,并被较多的卫星所拱卫。它由于快速自转而呈扁球形。赤道半径约为60,000公里。土星的平均密度只有0.70克/立方厘米,是八大行星中密度最小的。如果把它放在水中,它会浮在水面上。土星的大半径和低密度使其表面的重力加速度和地球表面相近。土星在冲日时的亮度可与天空中最亮的恒星相比。由于光环的平面与土星轨道面不重合,而且光环平面在绕日运动中方向保持不变,所以从地球上看,光环的视面积便不固定,从而使土星的视亮度也发生变化。当土星光环有最大视面积时,土星显得亮一些;当视线正好与光环平面重合时,光环便呈现为一条直线,土星就显得暗些。二者之间的亮度大约相差3倍。 § 体表环境 土星绕太阳公转的轨道半径约为14亿公里,它的轨道是椭圆的。它同太阳的距离在近日点时和在远日点时相差约1 .5亿公里。土星绕太阳公转的平均速度约为每秒9.64公里,公转一周约29.5年。土星也有四季,只是每一季的时间要长达7年多,因为离太阳遥远,即使是夏季也是极其寒冷。土星自转很快,但不同纬度自转的速度却不一样,这种差别比木星还大。赤道上自转周期是10小时14分,纬度60度处则变成10小时40分。这就是说在土星赤道上,一个昼夜只有10小时零14分。土星 土星大气以氢、氦为主,并含有甲烷和其他气体,大气中飘浮着由稠密的氨晶体组成的云。从望远镜中看去,这些云像木星的云一样形成相互平行的条纹,但不如木星云带那样鲜艳,只是比木星云带规则得多。土星云带以金黄色为主,其余是橘黄色、淡黄色等。土星的表面同木星一样,也是流体的。它赤道附近的气流与自转方向相同,速度可达每秒500米,比木星上的风力要大得多。 土星与地球的轨道关系土星极地附近呈绿色,是整个表面最暗的区域。根据红外观测得知,云顶温度为-170℃,比木星低50℃。土星表面的温度约为-140℃。土星表面有时会出现白斑,最著名的白斑是1933年8月发现的,这块白斑出现在赤道区,呈蛋形,长度达到土星直径的1/5.以后这个白斑不断地扩大,几乎蔓延到整个土星表面。 由于这颗行星表面温度较低而逃逸速度又大(35.6公里/秒),使土星保留着几十亿年前它形成时所拥有的全部氢和氦。因此,科学家认为,研究土星目前的成分就等于研究太阳系形成初期的原始成分,这对于了解太阳内部活动及其演化有很大帮助。一般认为土星的化学组成像木星,不过氢的含量较少。土星上的甲烷含量比木星多,而氨的含量则比木星少。 1973年4月美国发射的行星际探测器“先驱者”11号发现土星有一个由电离氢构成的广延电离层,其高层温度约为977℃。观测结果表明,土星极区有极光。 目前认为,土星形成时,起先是土物质和冰物质吸积,继之是气体积聚。因此,土星有一个直径20,000公里的岩石核心。这个核占土星质量的10%到20%,核外包围着5,000公里厚的冰壳,再外面是8,000公里厚的金属氢层,金属氢之外是一个广延的分子氢层。 1969年,一架飞机在地球大气高层对土星的热辐射作了红外观测,发现土星和木星一样,它辐射出的能量是它从太阳接收到的能量的两倍。这表明土星和木星一样有内在能源。后来“先驱者”11号的红外探测证实了这一点,测得土星发出的能量是从太阳吸收到的2.5倍。 § 基本资料 轨道资料 远日点距离:1 513 325 783 公里、10.115 958 04 天文单位 近日点距离:1 353 572 956 公里、9.048 076 35天文单位 轨道半长轴:433 449 370公里、9.582 017 20天文单位 轨道离心率:0.055 723 219 轨道周期: 10 832.327 天s、29.657 296 儒略年 会合周期:378.09 天 平均公转速度:9.69 公里/秒 平均近点角:320.346 750° 轨道倾角:2.485 240°、5.51° 对土星赤道 升交点赤经:113.642 811° 近日点辐角:336.013 862° 卫星:~200颗已观测过(61颗的轨道已确认) 物理特征 赤道半径:60 268 ± 4 公里、9.4492 地球 两极半径:54 364 ± 10 公里、8.5521地球半径 表面积:4.27×1010公里²、83.703 地球 体积:8.2713×1014公里³、763.59地球 质量:5.6846×1026 公斤、95.152地球 平均密度:0.687公克/厘米³(比水低) 赤道表面重力:8.96 米/秒²、0.914 g 宇宙速度:35.5 公里/秒 恒星自转周期:0.439-0.449 天(10小时32-47分钟) 赤道旋转速率:9.87 公里/秒、35 500 公里/小时 轴倾斜:26.73° 北极赤经:2 h 42 min 21 s、40.589° 赤纬:83.537° 反照率:0.342 (综合的)、0.47 (几何的) 表面温度:1 帕水平、0.1帕 最小 平均 最大、134 K、84 K 星等:+1.2 to-0.24 土星 角直径:14.5"- 20.1" 大气组成 ~96%氢 (H2) ~3% 氦 ~0.4%甲烷 ~0.01%氨 ~0.01%重氢(HD) 0.000 7%乙烷 § 物理特性 内部构造 虽然只有少量的直接资料,但土星的内部结构仍被认为与木星相似,即有一个被氢和氦包围着的小核心。岩石核心的构成与地球相似但密度更高。在核心之上,有更厚的液体金属氢层,然后是数层的液体氢和氦层,在最外层是厚达1,000 公里的大气层,也存在着各种型态冰的踪迹。估计核心区域的质量大约是地球质量的9–22倍。土星有非常热的内部,核心的温度高达11 700 °C,并且辐射至太空中的能量是它接受来自太阳的能量的2.5倍。大部分能量是由缓慢的重力压缩(克赫历程)产生,但这还不能充分解释土星的热能制造过程。额外的热能可能由另一种机制产生:在土星内部深处,液态氦的液滴如雨般穿过较轻的氢,在此过程中不断地通过摩擦而产生热。 大气层 土星外围的大气层包括93.2%的氢和6.7%的氦,可以侦测到的气体还有氨、乙炔、乙烷、磷化氢和甲烷。上层的云由氨的冰晶组成,较低层的云则由硫化氢氨(NH4SH)或水组成。相对于太阳所含有的丰富的氦,土星大气层中氦的丰盈度明显低得多。 对于比氦重的元素的含量,目前所知不甚精确;但如果假设与太阳系形成时的原始丰盈度是相当的,则可估算出这些元素的总质量是地球质量的19–31倍,而且大部分都存在于土星的核心区域。 云层 土星 土星的温度辐射图:土星南极底部是一个明显的热点。土星的上层大气与木星相似(在相同定义的前提下),同样都有着一些条纹;但土星的条纹比较暗淡,并且赤道附近的条纹也比较宽。从底部延展至大约10公里高处,是由水冰构成的层次,温度大约是-23 °C。在这之后是硫化氢氨冰的层次,延伸出另外的50公里,温度大约在-93 °C,在这之上是80公里的氨冰云,温度大约是-153 °C。接近顶部,在云层之上200 公里至270 是可以看见的云层顶端,由数层氢和氦构成的大气层。 土星的风速是太阳系中最高的,航海家计划的数据显示土星的东风最高可达500 m/s(1,800 公里/时)。直到航海家探测器飞越土星,比较纤细的条纹才被观测到。然而从那之后,地基望远镜也被改善到在通常情况下都能够观察到土星的这些细纹。 土星的大气层通常都很平静,偶尔会出现一些持续较长时间的长圆形特征,以及其他在木星上常常出现的特征。1990年,哈柏太空望远镜在土星的赤道附近观察到一朵极大的白云,是在航海家与土星遭遇时未曾看见的,在1994年又观察到另一朵较小的白云风暴。1990年的白云是大白斑的一个例子,这是在每一个土星年(大约30个地球年),当土星北半球夏至的时候所发生的独特但短期的现象。之前的大白班分别出现在1876、1903、1933和1960年,并且以1933年的最为著名。如果这个周期能够持续,下一场大风暴将在大约2020年发生。 航海家1号发现北极区的六角形云彩特征,并在2006年被卡西尼号太空船证实。天文学家通过分析红外线影像发现土星有一个“温暖”的极地漩涡,这种特征在太阳系内是独一无二的。天文学家认为这个点是土星上温度最高的点,土星上其他各处的温度是-185 °C,而该漩涡处的温度则高达-122 °C。 在航海家1号的影像中最先被注意到的是一个长期出现在78°N附近,围绕着北极的六边形漩涡。不同于北极,哈勃太空望远镜所拍摄到的南极区影像有明显的“喷射气流”,但没有强烈的极区漩涡,也没有“六边形的驻波”。但是,NASA报告卡西尼号在2006年11月观测到一个位于南极像飓风的风暴,有着清晰的眼壁。这是很值得注意的观测报告,因为在过去除了地球之外,没有在任何的行星上观测到眼壁云(包括伽利略号太空船在木星的大红斑上都未能发现眼壁云)。 在北极的六边形中每一边的直线长度大约是13800 公里,整个结构以10h 39 m 24s自转,与行星的无线电波幅射周期一样,这也被认为是土星内部的自转周期。这个六边形结构像大气层中可见的其他云彩一样,在经度上没有移动。 这个现象的规律性的起源仍在猜测之中,多数的天文学家认为是在大气层中某种形式的驻波,但是六边形也许是一种新型态的极光。在实验室的流体转动桶内已经模拟出了多边型结构。 磁层 土星有一个简单的具有对称形状的内在磁场——一个磁偶极子。磁场在赤道的强度为0.2 高斯(20 µT),大约是木星磁场的20分之一,比地球的磁场微弱一点;由于强度远比木星的微弱,因此土星的磁层仅延伸至土卫六轨道之外。磁层产生的原因很有可能与木星相似——由金属氢层(被称为“金属氢发电机”)中的电流引起。与其他的行星一样,土星磁层会受到来自太阳的太阳风内的带电微粒影响而产生偏转。卫星土卫六的轨道位于土星磁层的外围,并且土卫六的大气层外层中的带电粒子提供了等离子体。 § 轨道和自转 发生的土卫六凌土星 六边型云彩特征的动画。土星和太阳的平均距离超过了1400000000 公里(9天文单位),轨道上运行的平均速度是9.69 公里/秒,所以土星上的一年(即土星绕太阳公转一周)相当于10759个地球日(或是28.5地球年)。土星的椭圆轨道相对于地球轨道平面的倾角为2.48°,因为离心率为0.056,因此土星与太阳在近日点和远日点(行星在轨道路径上与太阳最近和最远的两个点)之间的距离变化大约为155000000 公里。 土星可见的特征(如六边型云彩)的自转A class=innerlink title=速率 href="http://www.hudong.com/wiki/%E9%80%9F%E7%8E%87">速率根据所在纬度的不同而有所不同,各个的区域的自转周期如下:“系统I”的周期是10h14min00s(844.3°/d),包含的是赤道区域,从南赤道带的北缘延伸至北赤道带的南缘;其他的纬度都属于周期为10h39min24s (810.76°/d)的“系统II”;基于航海家飞越土星时发现的无线电波,“系统III”的周期为10h39min22.4 s(810.8°/d);因为与系统II非常接近,它可以很大程度上替代系统II。 然而,精确的内部周期仍然未能确定。卡西尼太空船在2004年接近土星时,发现无线电的周期又有可察觉的增加,达到10 h 45 m 45 s(± 36 s)。造成变化的原因仍不清楚,但这种变化被认为是由于无线电的来源在土星内部不同的纬度上运动而改变了自转周期,而不是出自土星本身自转周期上的变化。 而后,在2007年,无线电发射被发现没有跟随着行星一起旋转,而可能是由等离子体圆盘的对流造成的,它也与除了行星的自转之外的其他因素有关。有报道指出,这种测量到的自转周期的变化也许是由土星卫星土卫二上的喷泉活动造成的。由这种活动而散布进入土星轨道的水蒸气被电离,从而影响了土星的磁场,使得磁场的旋转速度相对于土星的自转被稍稍降低。目前还没有方法可以直接测定土星核心的自转速率。 在2007年9月的报告中,根据各种测量结果(包括卡西尼、航海家和先锋号的报告)综合而得的对土星自转的最后估计值是10小时32分35秒。 § 土星环 土星 主条目:土星环 历史 土星因为它美丽的行星环而出名,它也是最早被发现具有光环的行星。土星环首先被伽利略在1610年7月用自制望远镜观察到。 在1612年,土星环以侧面朝向地球,因此看起来似乎是消失不见,伽利略因此而感到困惑不解。在1613年他又再次看见了环,这使伽利略更加困惑。 在1655年,克里斯蒂安·惠更斯观测到完整的土星环,他使用了一个比在伽利略时代能得到强大得多的望远镜。惠更斯观测土星并写道:“它(土星)被一个薄且平坦的环环绕着,环与土星没有接触,并且相对黄道倾斜。” 在1675年,乔凡尼·卡西尼确定土星环由许多较小的环组成,中间并且有缝存在着,其中最明显的环缝在不久之后被命名为卡西尼缝。卡西尼缝存在于A环和B环之间,宽度有4800 公里。 在1859年,詹姆斯·克拉克·麦克斯韦提出土星环不可能是固体的,否则将会因为不稳定而碎裂。他认为环是由为数众多的小颗粒组成的,每个颗粒都独立地环绕着土星运行。透过光谱学的研究,立克天文台的詹姆斯·基勒在1895年证实了麦克斯韦的理论。 物理特性 关于土星环的起源有两种主要的理论。一种理论是在19世纪提出的起源于洛希极限,认为环原本是土星的一颗卫星,因为轨道的衰减而落入洛希极限的范围内,因本身不够紧密而被潮汐力扯碎(参见洛希极限),这种理论又演变出卫星被小行星或彗星撞击而瓦解的学说。 第二种理论认为它并非来自卫星,而是从形成土星的原星云中直接形成的。 土星圆环出现神秘扭曲和旋转 在环中最大的空隙是卡西尼缝和恩克环缝,土星的恩克环缝是在1837年5月28日由恩克于柏林发现的。其他的缝隙可能是与质量较大的卫星轨道周期产生共振造成的,土卫一维系著卡西尼缝的存在,还有更多的环状结构因为受到其他卫星周期性的扰动而产生螺旋状的波浪。 来自卡西尼太空船的资料显示土星环有自己的大气层,与行星本身无关而独立存在。大气中有氧分子(O2),这是来自太阳的紫外线作用与环中的冰而产生的。水分子之间的链结受到紫外线的刺激产生化学作用释放出并抛出了气体,尤其是O2。根据这一模型,大气层中也存在氢气(H2)。 环中也有稀薄的OH(氧化氢)气体,如同O2一样,这些气体也是水分子的崩解导致的,但这一分解是由高能量离子轰击土卫二抛射出来的水分子所造成的。这些大气层尽管非常稀薄,依然还是可以被在地球上空的哈柏太空望远镜检测出来。 土星在它的亮度上呈现复杂的样式。光度的变化大多可以归咎于环的变化,并且在每个轨道周期有两个循环的变化。由于行星轨道的离心率,使得叠加在北半球冲的时候比在南半球冲时更为明亮。 在1980年,航海家1号飞越土星时显示F-环是由三条细环像编辫子一样的纠结在一起,而呈现出复杂的结构;现在知道是在外面的二个环有突起的瘤,造成交织和纠结成团的假象,比较暗的第三个环则在它们的内侧。 环上的轮辐 B环上的轮辐,是航海家2号在1981年拍摄的。在1980年以前,对土星环的结构和行为完全都以万有引力的作用来解释。 航海家太空船在B环上发现被称为轮辐的辐射线状特征,这些无法用同样的方法来解释,因为它们的存在和绕着环的转动,是与轨道力学不一致的。这些轮辐在背景散射光下呈现黑暗,而在前景散射光下显得明亮。它们被假设是悬浮在圆环平面上的微尘,受到电磁的交互作用而联系在一起,因此它们的转动是与土星的磁气层同步。但是,造成轮辐的确实机制仍然不清楚。 它们看起来有季节性的变化,在土星的仲冬或盛夏时消失不见,当土星接近分点时又再度出现。在2004年初,当卡西尼太空船抵达土星时这些轮辐都未出现。基于目前对于辐条的成因的模型,一些科学家推测这些轮辐要到2007年后才会出现。然而,通过对卡西尼拍摄的环影像的持续寻找,发现轮辐在2005年9月5日重新出现。 § 卫星 土星 土星有为数众多的卫星。精确的数量尚不能确定,所有在环上的大冰块理论上来说都是卫星,而且要区分出是环上的大颗粒还是小卫星是很困难的。到2009年,已经确认的卫星有61颗,其中52颗已经有了正式的名称;还有3颗可能是环上尘埃的聚集体而未能确认。许多卫星都非常的小:34颗的直径小于10 公里,另外13颗的直径小于50 公里,只有7颗有足够的质量能够以自身的重力达到流体静力平衡。 传统上,土星的卫星的英文名称都以希腊神话中的巨人来命名,这种惯例源自约翰·赫歇尔(威廉·赫歇尔的儿子),土卫一(“Mimas”)和土卫二(“Enceladus”)的发现者,他在自1847年出版的《在好望角的天文观测成果》中提出了这种命名法,理由是Mimas和Enceladus是克洛诺斯(希腊神话中的Saturn)的兄弟姐妹。 § 温度 土星的表面温度为-140℃,支顶温度为-180℃,比木星低50℃。土星有一个直径为2万公里的岩石核心,核心外面就是土星大气。 § 六角星云 美国国立光学天文台的科学家们在研究“旅行者”2号发回的土星照片时,发现了一个奇怪的现象:在土星的北极上空有个六角形的云团。这个云团以北极点为中心,并按照土星自转的速度旋转。土星北极的六角形云团并不是“旅行者”2 号直接拍到,因为“旅行者”2 号并没有直接飞越土星北极上空。但它在土星周围绕行时,从各个角度拍下了土星照片。天文学家们把那些照片合成以后,才看清了土星北极上空的全貌,也才发现了那个六角形云团。土星北极上空六角形云团的出现,促使科学家们不得不重新认识土星。 § 探索 土星 古代观测 在史前时代就已经知道土星的存在,在古代,它是除了地球之外已知的五颗行星中最远的一颗,并且有与其特性相符的各式各样的神话。在古罗马神话中它是农神,从这颗行星所采用的名字,它是农业和收获的神祇。罗马人认为他与希腊神 克洛诺斯 ,希腊人认为最外层的行星是神圣的克洛诺斯,而罗马人也承袭这个传统。 在印度占星学,有9个占星用的天体,像是著名的 纳瓦格拉哈历(Navagraha,梵文),土星是其中之一,称为"Sani"或"Shani", 法官在重行星之中,由大家共同评判各自的行为是好或是坏。古代的中国和日本文化依据中国的五行之说选定这颗行星是土星,是在传统上用于自然分类的元素之一。在古希伯来语,土星称为'Shabbathai',它的天使是卡西尔(Cassiel),意思是智慧之神或有益于身心的;是Agiel(精灵),它更为黑暗的一面就是恶魔(lzaz)。在奥图曼土耳其使用的乌尔都语和马来语,它的名称是'Zuhal',是从阿拉伯文转化过来的。 使用口径1.5厘米的望远镜就能看见土星环,但直到1610年伽利略用望远镜看了才知道它的存在。他虽然起初认为是在土星两侧的卫星,直到克里斯蒂安·惠更斯使用倍数更高的望远镜才看清楚并认为是环。惠更斯也发现了土星的卫星土卫六。不久之后,珍-多米尼克·卡西尼发现了另外4颗卫星:土卫八、土卫五、土卫三和土卫四。在1675年,卡西尼也发现了著名的卡西尼缝。 之后一段时间都没有进一步的有意义发现,直到1789年威廉·赫歇尔才再发现两颗卫星:土卫一和土卫二。形状不规则的土卫七和土卫六有着共振,是在1848年被英国发现的。 在1899年,威廉·亨利·皮克林发现土卫九,一颗极度不规则卫星,它没有如同更大卫星般的同步转动。菲比是第一颗被发现的这种卫星,它以周期超过一年的逆行轨道绕着土星公转。在20世纪初期,对土卫六的研究在1944年确认他有浓厚的大气层 - 这是在太阳系的卫星中很独特的特征。 先锋11号飞越 1979年的9月,先锋11号成为拜访土星的第一个人造天体,它从距离行星云层顶端20 000 公里处飞越,获得了低分辨率的行星和一些卫星的影像,但影像的解析力上不足以分辨表面的特征。这艘太空船也观察了环,发现了稀薄的F-环,并且在朝向太阳的方向观察时原本空白且黑暗的环缝是明亮的,或者换句话说,环缝不是空无一物的。先锋11号也测量了土卫六的温度。 “卡西尼”号探测器拍摄到的土星大气照片 航海家的飞越 在1980年11月,航海家1号太空船拜访了土星系统,送回了第一批行星、环和卫星的高分辨率影像,这是第一次人们可以看清土星表面的变化和围绕着它的各式各样的卫星。航海家1号执行了近掠土卫六的任务,使人们对这颗卫星大气层的认识增进了许多。但同时,它也证实了可见光是难以穿透土卫六大气层的,因此还是未能观察到土卫六表面的详情。这次的近掠也改变了太空船的航向,使它的飞行轨道偏离了太阳系的平面。 差不多在一年之后的1981年8月,航海家2号继续对土星系统进行研究,拍摄了更多土星卫星的近距离照片,并且也发现了土星环和大气发生变化的证据。不幸的是,在飞越期间,太空船的转动平台故障了两三天,使得一些计划中的影像无法拍摄。完成对土星的观测之后,太空船利用土星的重力抛射朝向天王星飞去。 这艘太空船发现并确认了一些新的卫星在接近环或环的内部环绕着土星,也发现了一些新的小环缝:马克士威缝(在C环内的缝)和Keeler环缝(在A环内一个宽42 公里的环缝)。 卡西尼的环绕 从卡西尼号观察到的土星日食。在2004年7月1日,卡西尼-惠更斯号太空船完成SOI(土星轨道切入)的操纵进入了在土星附近环绕的轨道。在SOI之前,它已经广泛的研究过这个系统。在2004年6月,它首度近距离的飞越土卫九,并送回了高分辨率的影像和数据资料。 卡西尼号飞越土星最大的卫星,土卫六,并且用雷达影像获得了大湖、海岸线以及许多海岛和山的影像。在2004年12月25日释放登陆艇惠更斯号之前,两度飞越土卫六。惠更斯号在2005年1月14日登陆土卫六的表面,在大气层中下降的途中和着陆以后送回了大量的数据。在2005年当中,卡西尼号多次飞越土卫六和其它的冰卫星。卡西尼号最后一次飞越土卫六是在2008年3月23日。 从2005年初,科学家追踪由卡西尼号发现的土星上的闪电。这些闪电释放出的能量比地球上的闪电强了1,000倍。此外,科学家也相信这场风暴是曾经见过的最强烈的一种。 在2006年3月10日, NASA宣布经由卡西尼号的影像发现,在土卫二上的间歇泉喷发出的物质中含有液态水的证据,影像也显示在冰冷的喷泉中有高耸的羽状物散发出的液体显示出有水的颗粒。依据加州理工学院安德鲁英格索尔博士的解释:"太阳系其他的卫星有被数公里厚的冰冻外壳覆盖著的液态水海洋,这与此处在地表之下数米,不超过10米的口袋中有液态水,不知会有什么不同。 在2006年9月20日,卡西尼号的影像揭露了一个之前未曾发现过的行星环,在较明亮的主要土星环带之外和G与E环之内。明显的,这个环的来源是土星的两颗卫星像陨石一样碰撞的结果。 在2006年7月,卡西尼号首度证明在土卫六的北极附近有碳氢化合物的湖,并在2007年1月获得证实。在2007年3月,另外的影像发现在土卫六的北极附近有碳氢化合物的"海洋",最大的一个几乎有里海那么大。在2006年10月,太空船在土星的南极侦测到一个直径5,000 公里并有眼墙的飓风。 在2006年当中,太空船发现并证实了四颗新的卫星。它最初的任务在2008年完成地74圈的环绕之后即将结束。然而,预期这艘太空船将延伸出新的任务。 § 观测时机 土星光环和阴影 土星是肉眼可见的五颗行星中距离最远的一颗,其他四颗是水星、金星、火星和木星(天王星和灶神星在黑暗的环境下也能用肉眼看见),并且直到1781年发现天王星之前,是早期的天文学家所知道的最后一颗行星。以肉眼在夜晚看见的土星是一颗明亮的,发出淡黄色光芒的光点,光度通常在+1至0等之间,以29½年的周期在黄道上以黄道带的众星作为背景,绕行天球一周。多数人借助于光学仪器(大的双筒镜或望远镜)的协助,以20倍以上的倍数,就能清楚的看见土星环。 土星是外行星,在合日(视觉上接近太阳)前后两个月以外,其他时间也适合观测。而跟外行星的性质一样,当冲日时是观测土星最好时候,因为土星冲日时,土星最亮(约0等)之余,视直径(角直径)也最大,而且冲日前后,整夜可见。 在它出现在天空中可以观赏的大部分时间,都是值得鼓励大家观赏的目标。在接近冲(行星的位置在离日度180°之处,也就是在天空中与太阳相对的方向上)的前后时段是观赏土星和土星环的最佳时段。土星在2002年12月17日冲的时候,因为土星环以最有利的角度朝向地球,因此有最大的亮度。 土星是外行星,在合日(视觉上接近太阳)前后两个月以外,其他时间也适合观测。而跟外行星的性质一样,当冲日时是观测土星最好时候,因为土星冲日时,土星最亮(约0等)之余,视直径(角直径)也最大,而且冲日前后,整夜可见。 通过三吋口径(物镜直径)或以上的望远镜,以目镜放大80倍以上便能透过它清楚看见土星及土星环,在大气稳定时(放大100倍以上)还能看到卡西尼环缝。2007年2月11日,土星冲日,亮度-0.2等,那时土星在狮子座,视直径20.27"。 § 环状结构 土星超级环状结构的垂直高度为土星直径的20倍,而土星的直径是地球的9倍。环状结构的主要部分距离土星大约370万英里,并向外延伸740万英里。 由于该环状结构极度漫射扩散,除了灰尘微粒,并不反射太多的可见光线,尽管它的温度非常低,但它还可以通过斯皮策望远镜能观测到的红外光线和热辐射而发出的光亮。 在发现这个土星最大环状结构之前,天文学家将探测到的土星周围7个主要环状结构分别命名为“A环-E环”,此外还发现几个光线模糊的未命名环状结构。 微小冰和灰尘微粒位于这个巨大的土星系统之中,它包含着土星及其61颗卫星。从土星的主环平面角度来看,这个环状结构倾斜度为27度。 虽然土星环状结构非常寒冷,仅达到零下316摄氏度,但它却能通过热辐射而发亮。克拉维称,此前没有人通过红外线仪器观测到它的存在。目前,这项研究报告发表在10月7日出版的《自然》杂志上。 维吉尼亚大学天文学家圣安妮-维毕斯策(Anne Verbiscer)是该项研究报告的另一位作者,他说:“这是一个超级体积的环状结构。”土星的卫星土卫十在该轨道内运行,天文学家认为土卫十的构成成分主要来自该环状结构。同时,该环状结构还揭示了另一颗卫星土卫八的神秘面纱,土卫八具有“阴阳脸”,一侧是明亮区域,另一侧却是非常黑暗,天文学家乔凡尼-卡西尼(Giovanni Cassini)于1671年首次发现土卫八的奇特结构。土星环状结构与土卫十保持相同方向,而土卫八和其他土星卫星却保持着相反方向,科学家认为来自外球的宇宙物质向内部移动,并猛烈撞击土卫八。 马里兰大学天文学家道格拉斯-汉密尔顿(Douglas Hamilton)称,天文学家长期以来猜测土星外侧卫星土卫十与土卫八黑暗区域之间存在着一定的联系,发现的环状结构将证实两者之间的关系。 § 2011年得探测发现 欧洲航天局2011年7月26日发布的消息说,该机构赫歇尔太空观测卫星传回的数据显示,来自土星的卫星——土卫二的水在土星周围形成一个巨大的水蒸气圆环,这一发现首次确认了土星上层大气中水的来源。 欧航局说,这一发现同时意味着土卫二是目前已知的太阳系中唯一能影响其行星大气化学成分的卫星。土卫二通过收集其南极区域的水分,每秒排出大约250公斤的水蒸气,从而创造出一个围绕土星的水蒸气圆环。 土星的半径约为6万公里。土卫二的运行轨道与土星之间的距离相当于土星半径的约4倍,而那个水蒸气环的总宽度是土星半径的10倍以上,其厚度约与土星半径相当。 欧航局的红外观测卫星团队曾在1997年首次发现土星上层大气中的水蒸气,但其来源一直是个谜。赫歇尔卫星的最新观测数据表明,土卫二排出的水中,约3%至5%能以水蒸气形式进入土星上层大气。 土卫二直径约500公里,是太阳系中迄今观测到存在地质喷发活动的3个天体之一,也是天体生物学最重要的研究对象之一。 § 多义词 汽车品牌 土星汽车信息 商 标:Saturn(土星)创建时间:1985年 所属国家:美国所属集团:通用汽车公司土星SATURN是通用汽车公司旗下的著名汽车品牌之一。1985年通用汽车公司决定新建土星分部,企图开发先进的土星牌轿车以抵御外国轿车大规模进入美国市场。分部设在田纳西州春山市,是通用公司唯一从内部建立起来的公司。主要产品分为豪华轿车SL、旅行轿车SW和跑车SC。土星分部是通用公司建成最晚的分部,也是唯一从通用公司内部建立起来的分部,他们用全新的设计理念指导生产,以“制造消费者所需要的汽车”为指导,开始研制了SL轿车、SW旅行车及SC运动车系。他们依据这一思想设计了土星SATURN商标。在美国本土车型多为欧宝系列产品。 名称来由 尽管土星与太阳系中土星行星同名,并且它的商标就是土星轨迹的图像,土星汽车的名称并不是由此而来,而是为纪念一支名叫土星的火箭(Saturn rocket)在20世纪六七十年代的时候成功的把美国宇航员送上了月球。与此相类似的是福特公司的野马Mustang汽车,它是为了纪念P-51 Mustang战斗机,但是依然用一只美洲野马的图像作为其商标。 土星汽车标志 土星(Saturn)是通用汽车公司最年轻的品牌,不存在背历史包袱,不存在有损害传统的顾忌,以市场需求为准绳,创新立异轻装上阵,这就是土星车的特点。其标志为土星轨迹线,给人一种高科技、新观念、超时空的感觉,寓意土星汽车技术先进,设计超前且最具时代魅力。 |
随便看 |
百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。